

PG DEPARTMENT OF BOTANY

M. Sc. BOTANY COURCE PLAN 2020-2021 EVEN SEMESTER

Coordinator: Prof. E. J. Vincent

SECOND SEMESTER PG DEPARTMENT OF BOTANY

M. Sc. BOTANY COURCE PLAN 2020-2021

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

M. Sc. Programme in Botany (CBCSS) (from 2020 admissions onwards)

Programme, structure of courses and distribution of credits

SECOND SEMESTER

Sl. No.	Course	Title	Contact Hours	Credits	Internal	External	Total Credits
1.	Core	BOT2C04: Cell Biology, Molecular Biology and Biophysics	6	5	20%	80%	5
2.	Core	BOT2C05: Cytogenetics, Genetics, Biostatistics, Plant Breeding and Evolution	6	5	20%	80%	5
3.	Core	BOT2C06: Plant Ecology, Conservation Biology, Phytogeography and Forest Botany	6	5	20%	80%	5
4.	Core Practical	BOT2L03: Practicals of Cell Biology, Molecular Biology, Biophysics and cytogenetics	3	2.5	20%	80%	2.5
5.	Core Practical	BOT2L04: Practicals of Genetics, Biostatistics, Plant Breeding, Plant Ecology, Conservation Biology, Phytogeography and Forest Botany	3	2.5	20%	80%	2.5
6.	Seminar		1	-	-	-	-
	Total		25	-			5

BOT2C04: CELL BIOLOGY, MOLECULAR BIOLOGY AND BIOPHYSICS

(2.5+1.5+1+1= 6 hours)

Lecture Hours per week: 6, Credits: 5

Internal: 20%, External: 80%, Examination 3 Hours

OBJECTIVES:

- a) To familiarize student with the structure of the biomolecules found in all living organisms.
- b) To develop knowledge among students how RNA, DNA and proteins are synthesized.
- *c)* To develop skills to choose appropriate biophysical methods to characterize biological systems and appreciate their limitations.

Cell Biology

Module I:

The nucleus. Interphase nucleus- Chromatin organization- nucleosomes, scaffold. Organization of eukaryotic chromosome. Heterochromatin- constitutive, facultative and condensed. Euchromatin. Satellite DNA. Chromosome banding and its significance.

Module II:

Cell reproduction: Cell cycle. Specific events G1, S, G2 and M phases. Significance of G0. Control of cell cycle. Significance. Gene expression during cell cycle. Mitotic Inducers

Module III:

Meiosis: types, synaptonemal complex, significance of meiosis. Genetic control and consequences of meiosis. Restriction points and check points. Cell cycle regulation of meiotic events- behaviour of sex chromosomes in meiosis- suppression of DNA replication between Meiosis I and II. Meiotic defects and human diseases.

Module IV:

Programmed cell death- necessity, classes, signals. Genetic analysis of cell death. Proteins regulating apoptosis. Pathways leading to cell death- significance. Aging- cellular and extracellular. Cell signaling.

Module V:

Cell interactions-communication, recognition and adhesion. Application.

Module VI:

Cellular differentiation and specialization. General characteristics, intrinsic interactions-Nucleo-cytoplasmic. Extrinsic interactions. Molecular mechanisms of cellular differentiations.

Module VII:

Cancer- carcinogenic agents. Phenotype of the transformed cell. Genetic basis of malignant transformation- oncogenes. Tumor suppressor genes. Cancer and cell cycle. Metastasis. Interaction of cancer cells with normal cells.

(5 Hours)

(5 Hours)

(5 Hours)

(4 Hours)

(5 Hours)

(5 Hours)

(3 Hours)

References:

- 1. Cooper Jeffrey M. The Cell- A Molecular Approach. ASM, Washington.
- 2. Karp Gerald. Cell Biology. JohnWiley and Sons.
- 3. Derobertis. Cell and Molecular Biology.
- 4. Sadava R.
- 5. Pollard T.D. and Earn Shaw W.C. Cell Biology. Saunders.

Molecular Biology

Module I:

Molecular biology of gene: Structure of DNA: Repetitive DNA; c-value paradox.

Module II:

Replication of DNA: Enzymology of replication. Replication in prokaryotes and eukaryotes. Primosomes and replisomes. Telomerase and its function.

Module III:

Gene expression: regulation of gene expression- Operon concept- Gene regulation in prokaryotes and eukaryotes- enhancers and silencers.

Module IV:

Protein synthesis: Transcription, post-transcriptional events. Introns and their significance. Translation. Post translational events. Role of chaperons.

Module V:

Mutation: Spontaneous and induced. Physical and chemical mutagens. Molecular mechanism of mutation. Mutation and cancer. Mutator and antimutator genes. DNA repairing mechanisms.

Module VI:

Molecular evolution: The origin of genomes. Evolution of new genes. Origin of eukaryotic genomes. Phylogenetics. Application of molecular phylogenetics.

References:

- 1. Lewin Benjamin. Genes. Oxford University press.
- 2. Brown TA. Genomes. John Willey and Sons.
- 3. Snustad, Simmons and Jenkins. Principles of Genetics. John Willey and Sons.
- 4. Weaver and Hendrick. Genetics. Wm. C. Brown Publishers.
- 5. Hawkins J.D. Gene Structure and Expression. Cambridge University Press.

Biophysics

Module I:

(3 Hours)

pH and buffer solutions- hydrogen ion concentrations and pH, dissociation of acids and bases. Measurement of pH using organic indicator molecule and potentometric method. Functions of buffers in a biological system. Use of buffers in biological and biochemical research. pH and life. Henderson and Hasselbalch equation

(3 Hours)

(8 Hours)

(4 Hours)

(6 Hours)

(7 Hours)

(4 Hours)

Module II:

Chromatography: Principles of chromatography. Types of chromatography (Brief account). (3 Hours)

Module III:

Electrophoresis: Electrophoretic mobility, principles, PAGE, Agarose gel electrophoresis. Separation and detection of macromolecules by electrophoresis. Electrophoretic apparatus, technique and procedure

Module IV:

Centrifugation - Theory of centrifugation. Centrifuge- Types, Methodology of centrifugation, applications.

Module V:

Colorimetry and spectrophotometry: Beer-Lamberts law. Measurement of extinction. Calorimeters and spectrophotometers. Techniques and applications in biological and biochemical research. Comparison between colorimetry and spectrophotometry.

Module VI:

Radioblology: Autoradiography. principles, types. Methods and applications in biological Research.

Module VI:

immunochemistry: immune response. Antigens- Antibodies. Histo-incompatibility antigens; Structure of IgG. immunochemical assays - RIA, ELISA.

Module VII:

Cryobiology: Freeze drying (lyophilization) - applications.

References:

1.Hoppe, W. (Ed.). Biophysics. Springer Verlag. 2.Rogers, A.W. Techniques of Autoradiography.

Elsevier.

3.Roy, R.N. A Text Book of Biophysics. New Central Book Agency Pvt.

Ltd, Calcutta. Sasidharan, A. Selected Topics of Biophysics. Frontier Area Publishers.

4.Slayter, E.M. Optical methods in Biology. Wiley Intersciences.

5.Wong, C.H. Radiation Tracer Methodology in Biophysical Sciences.

6.Prentice Hall. Plummer, D. An introduction to Practical Biochemistry. Tata Mc Graw Hill, New Delhi.

(1 Hour)

(2 Hours)

(1 Hour)

(2 Hours)

(1 Hours)

(2 Hours)

BOT2C04: CELL BIOLOGY, MOLECULAR BIOLOGY AND BIOPHYSICS

(2.5+1.5+1+1= 6 hours)

Lecture Hours per week: 6, Credits: 5

Internal: 20%, External: 80%, Examination 3 Hours

OBJECTIVES:

- a) To familiarize student with the structure of the biomolecules found in all living organisms.
- b) To develop knowledge among students how RNA, DNA and proteins are synthesized.
- *c)* To develop skills to choose appropriate biophysical methods to characterize biological systems and appreciate their limitations.

LESSON PLAN: CELL BIOLOGY

Unit/ session/ hours (time Required	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output	Assessment
Module I The nucleus [4 hours]	Structure and organization of nucleus,Heterochroma tin and Euchromatin. SatelliteDNA. Chromosome banding.	 Lecture Discussion Experimental learning 	Lab sessions on cell divisions (Onion and Rheo)	To understand cell divisions and structure of chromosomes	Evaluation through test paper and Lab specimen preparations
Module II Cell reproduction [5 hours]	Cell cycle and events G1, S, G2 and M phases Gene expression during cell cycle and Mitotic Inducers.	 Lecture Discussion Experimental learning 	Lab sessions on Cell divisions along with Inducer treatments. (Onion and Rheo)	To understand cell divisions and Endomitosis	Evaluation through test paper and Lab specimen preparations
Module III Meiosis [5 hours]	Types, Synaptonemal complex, Cell cycle regulation of meiotic events- behaviour of sex chromosomes Meiotic defects and human diseases	 Lecture Discussion Participative learning 	Group discussions	To understand the role of cell cycle regulations in meiosis and their importance in Human diseases	Evaluation through test paper

Module IV Programmed cell death [5 hours]	Genetic analysis and Pathways leading to cell death. Proteins regulating apoptosis. Aging and Cell signaling	 Lecture Discussion Participative learning 	Group discussions	To understand the significance of apotosis in ageing and cell signaling	Evaluation through test paper
Module V Cell interactions [5 hours]	Events in cell interactions- communication, recognition and adhesion.	 Lecture Discussion Participative learning 	Group discussions	To understand the events in cell interactions	Evaluation through test paper
Module VI Cellular differentiation and specialization [5 hours]	General characteristics, intrinsic and Extrinsic interactions. Molecular mechanisms of cellular differentiations.	 Lecture Discussion Participative learning 	Group discussions	To understand the significance of cellular differentiation s	Evaluation through test paper
Module VII Cancer [5 hours]	Carcinogenic agents. Genetic basis of malignant transformation- oncogenes. Tumor suppressor genes. Cancer and cell cycle. Metastasis. Interaction of cancer cells with normal cells.	 Lecture Discussion Participative learning 	Group discussions	To understand the causes, mechanisms and the genes involved in Cancer.	Evaluation through test paper

LESSON PLAN: MOLECULAR BIOLOGY

Unit/ session/ hours (time Required	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output	Assess ment
Module I Molecular biology of gene [3 hours]	Structure of DNA: Repetitive DNA; c-value paradox.	 Lecture Lecture with animation videos from U-tube Discussion Problem 	Group discussion	To understand the structure of DNA and its molecular organization.	Evaluati on through test paper and MCQ

		solving			
Module II Replication of DNA 8 hours	Enzymology, Replication in prokaryotes and eukaryotes. Primosomes and replisomes. Telomerase and its function	 Lecture Discussion Lecture with animation videos from U-tube Participativ e learning 	Group discussion	To understand Replicative mechanism in prokaryotic and Eukaryotic mechanism.	Evaluati on through test paper and MCQ
ModuleIII Gene expression [4 hours]	Regulation of gene expression- Operon concept- Gene regulation in prokaryotes and eukaryotes- enhancers and silencer	 Lecture Discussion Lecture with animation videos from U-tube Participativ e learning 	Group discussions	To understand Gene regulation in prokaryotes and eukaryotes	Evaluati on through test paper and MCQ
Module IV Protein synthesis [7 hours]	Transcription, post- transcriptional events. Introns and their significance. Translation. Post translational events. Role of chaperons	 Lecture Discussion Lecture with animation videos from U-tube Participativ e learning 	Group discussions	To understand Transcription and Translation in Prokaryotes and Eukaryotes.	Evaluati on through test paper and MCQ
Module V Mutation [4 hours]	Definitions and Types Molecular mechanism of m mutation. Mutation and cancer. Mutator and antimutatór genes. DNA repairing mechanisms.	 Lecture Discussion Lecture with animation videos from U-tube Participativ e learning 	Group discussions	To understand Mutation and molecular mechanisms	Evaluati on through test paper and MCQ
Module VI Molecular evolution	The origin of genomes. Evolution of new genes. Origin of eukaryotic genomes. Phylogenetics.	LectureDiscussionParticipativ	Group discussions	To understand the origin and evolution genomes and	Evaluati on through test

6 hours	Application of molecular Phylogenetics.	e learning		significance of Molecular Phylogenetics.	paper and MCQ
	LESSON	PLAN: BIOPHY	<u>SICS</u>		
Unit/ session/ hours (time Required	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessm ent
Module I pH and buffer solutions [3 hours]	Hydrogen ion concentrations and pH, dissociation of acids and bases. Measurement of pH using organic indicator molecule and potentometric method. Functions of buffers in a biological system. Use of buffers in biological and biochemical research. pH and life. Henderson and Hasselbalch equation.	 Lecture Discussion Participativ e learning 	Group discussions	To understand pH and buffer solutions	Evaluation through test paper
Module II Principles of chromatography [1 hours]	Definitions and Types of chromatography	 Lecture Discussion Participativ e learning 	Group discussions	To understand the Principles of chromatograph y	Evaluation through test paper
Module III Electrophoresis [3 hours]	Electrophoretic mobility, principles, PAGE, Agarose gel electrophoresis. Separation and detection of macromolecules by electrophoresis. Electrophoretic apparatus,	 . Lecture Discussion Participativ e learning 	Group discussions	To understand the principle and mechanism of Electrophoresi s:	Evaluation through test paper
Module IV Colorimetry and spectrophotomet ry [2 hours]	Beer-Lamberts law. Measurement of extinction. Calorimeters and spectrophotometers. Techniques and applications in biological and biochemical research. Comparison between colorimetry and spectrophotometry	 Lecture Discussion Participativ e learning 	Group discussions	To understand the technique and mechanism of colorimetry	Evaluation through test paper

PG Botany Module VI Radioblology [2 hours]	Autoradiography. principles, types. Methods and applications in biological research.	 Lecture Discussion Participativ e learning 	Group discussions	To understand The principles, types. Methods and applications of Autoradiograp hy.	Evaluation through test paper
Module VII immunochemistr y [2 hours]	Immune response. Antigens- Antibodies. Histo-incompatibility antigens; Structure of IgG. immunochemical assays - RIA, ELISA.	 Lecture Discussion Participativ e learning 	Group discussions	To understand The mechanism of Immunobiolog y	Evaluation through test paper
Module VIII Cryobiology [1 hour]	Freeze drying (lyophilization) - applications	 Lecture Discussion Participativ e learning 	Group discussions	To understand The significance of Cryobiology	Evaluation through test paper

COURSE OUTCOME

The students who complete this course will be able to:

со	CO Statement
CO1	Analyses the dynamics of chromosome behavior and its interactions.
CO2	Evaluate the central dogma of life.
CO3	Evaluate the concept of biophysical techniques of instrumentation.
CO4	Describe the knowledge of biophysics and molecular biology in research studies.
CO5	Explain the role of various cell organelles and developed knowledge about various phases of cell division
CO6	Apply the knowledge of molecular evolution to decipher the phylogeny of gene families

BOT2C04: CELL BIOLOGY, MOLECULAR BIOLOGY AND BIOPHYSICS

(2.5+2.5+1= 6 hours)

Lecture Hours per week: 6, Credits: 5

Internal: 20%, External: 80%, Examination: 3 Hours

UNITWISE BREAK UP: CELL BIOLOGY

LECTURE HOURS: 32

OBJECTIVES:

a) To understand the basic organization of the cell, cell cycle and its components and the molecular basis of cellular function

b) To acquaint the students with DNA topology and chromatin structure

c) To understand the process of cell communication and signaling.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	The nucleus		To read about nucleus and	Lecture and Discussion	To make short notes on
Unit – 1	Interphase nucleus		chromosome		interphase
Unit – 2	Organization of eukaryotic chromosome	4	organization		nucleus, chromosome organization and
Unit – 3	Satellite DNA				banding
Unit – 4	Chromosome banding and its significance				techniques.
Module II:	Cell reproduction	_	To understand	Lecture and Discussion	To make short notes on Cell
Unit – 1	Cell cycle and Specific events (G1, S, M and G0)	5	cell cycle and events		cycle and Specific events.
Unit – 2	Gene expression during cell cycle.				
Unit – 3	Mitotic Inducers.				
Module III:	Meiosis		To learn about stages	Lecture and Discussion	To make short notes
Unit – 1	MeoisisTypes		of Meiosis		Meiosis and
	significance of meiosis.				genetic defects
Unit – 2	Synaptonemal complex,	5			defects
Unit – 3	Restriction points and				
	check points and Cell				
	cycle regulation of				
	meiotic events-				
Unit – 4	Behaviour of sex				
	chromosomes in				

12 | Page

	meiosis- suppression of				
	DNA replication				
	between Meiosis I and II				
	Meiotic defects and	1			
	human diseases				
Module IV:	Programmed cell death.		To understand	Lecture and Discussion	To make short notes on
Unit – 1	Necessity of	-	Programmed	Discussion	Programmed cell
	Programmed cell death,		cell death		death.
	classes, signals. Genetic				
	analysis of cell death				
Unit – 2	Proteins regulating	1			
	apoptosis	5			
Unit – 3	Pathways leading to cell				
Unit 2	death- significance.				
		_			
Unit – 4	Aging- cellular and				
	Extracellular				
Unit – 5	Cell signaling.]			
Module V:	Cell interactions.		To learn about Cell	Lecture and Discussion	To make short notes on Cell
Unit – 1	Communication,	1	interactions.	Diocussica	interactions
	recognition and	3			
	adhesion				
Unit – 2	Application.	1			
Module VI:	Cellular		To learn	Lecture and	To make short
	differentiation and specialization.		about Cellular differentiation and	Discussion	notes on Cellular differentiation and
Unit – 1	General characteristics of	-	specialization		specialization
OIIII - 1	Cellular differentiation		specialization		spectalization
	and specialization	5			
Unit – 2	Intrinsic (Nucleo-	-			
	cytoplasmic) and				
	Extrinsic interactions				
	Molecular mechanisms of	-			
	cellular differentiations				
Module VII:	Cancer		To learn	Lecture and	To make short
			about causes	Discussion	notes on Cancer
Unit – 1	Carcinogenic agents and	-	and	Discussion	
	Phenotype of the	5	mechanisms		
	transformed cell		of Cancer		
		-			
Unit – 2	Genetic basis of				
Unit – 2	Genetic basis of malignant				
Unit – 2	Genetic basis of malignant transformation				
Unit – 2	malignant				

PG Botany			
Unit – 3	Cancer and cell cycle.		
Unit – 4	Metastasis. Interaction of cancer cells with normal cells.		

UNITWISE BREAK UP: MOLECULAR BIOLOGY

LECTURE HOURS: 32

OBJECTIVE:

- *a)* To acquaint the students with DNA structure and their effect on the processes of DNA replication, repair, and transcription.
- b) To facilitate the learner in solving problems related to molecular biology.
- c) To Understand the central dogma of life.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Molecular biology of gene.		To understand	Lecture and Discussion	To make short note on Structure of DNA
Unit – 1	Structure of DNA:	3	Structure of		Problems related
Unit – 2	Repetitive DNA		DNA		to DNA structure
Unit – 2	c-value paradox				
Module II:	Replication of DNA.	8	To learn	Lecture and Discussion	To make short note Replication
Unit – 1	Enzymology of replication.		about DNA replication in Prokaryotes and Eukaryotes		of DNA. Word Problems related to DNA Replication
Unit – 2	Replication in prokaryotes and eukaryotes				
Unit – 3	Primosomes and replisomes				
Unit – 4	Telomerase and its function.				
Module III:	Gene expression: -		To understand	Lecture and Discussion	To make short note on Gene
Unit – 1	regulation of gene expression- Operon concept	4	Gene expression in prokaryotes		expression
Unit – 2	Gene regulation in prokaryotes and eukaryotes-		and eukaryotes		
Unit – 3	enhancers and silencers				
Module IV:	Protein synthesis			Lecture and	

		_			
Unit – 1	Transcription and		То	Discussion	To make short
	post-transcriptional	_	understand		note on Protein
	events	7	Protein		synthesis
Unit – 2	Introns and their		synthesis		
	significance.				
Unit – 3	Translation and Post				
	translational events				
Unit – 4	Role of chaperons				
Module V:	Mutation.		То	Lecture and	To make short
			understand	Discussion	note Mutation.
			significance		
Unit – 1	Types of Mutation-		of mutation		
	Spontaneous and		and		
	induced, Physical		repairing		
	and chemical		mechanisms		
	mutagens.		and its role		
Unit – 2	Molecular	4	in cancer		
	mechanism of				
	mutation.				
Unit – 3	Mutation and				
	cancer. Mutator				
	and antimutatór				
	genes				
Unit – 4	DNA repairing				
	mechanisms.				
Module VI	Molecular		То	Lecture and	
	evolution		understand	Discussion	To make short
Unit – 1	The origin of		Molecular		note Molecular
	genomes		evolution		evolution
Unit – 2	Evolution of new	6			
	genes				
Unit – 3	Origin of				
	eukaryotic				
	genomes				
Unit – 4	Phylogenetics.				
	Application of				
	molecular				
	phylogenetics				

UNITWISE BREAK UP: BIOPHYSICS

LECTURE HOURS: 16

OBJECTIVE:

- *a)* To acquaint the students about knowledge of biophysics and molecular biology in research studies.
- b) To understand the biophysical techniques of instrumentation.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment			
Module I:	pH and buffer solutions.		To understand pH and Buffer systems	Lecture and Discussion	To make short note on pH and buffer			
Unit – 1	hydrogen ion concentrations and pH, dissociation of acids and bases				solutions			
Unit – 2	Measurement of pH using organic indicator molecule and potentometric method Functions of buffers in	3						
	a biological system. Use of buffers in biological and biochemical research pH and life	-						
	Henderson and Hasselbalch equation	-						
Module II:	Chromatography		To understand Principle and	Lecture and Discussion	To make short notes on			
Unit – 1	Principle	1	Types of Chromatography		Chromatography			
Unit – 2	Types of chromatography							
Module III:	Electrophoresis		To understand	Lecture and Discussion	To make short note on			
Unit – 1	Electrophoretic mobility and principles	3	3	3	3	Principles of Electrophoresis		Electrophoresis
Unit – 2	PAGE,	-						
Unit – 3	Agarose gel electrophoresis.							
Unit – 4	Separation and detection of macromolecules by electrophoresis.							
Unit – 5	Electrophoretic apparatus	1						
Unit – 6	Electrophoresis- Technique and procedure							
Module IV:	Centrifugation		To understand Methodology of	Lecture Illustration	To make short note on			
Unit – 1	Theory of centrifugation.	2	Centrifugation	Discussion	Centrifugation			
Unit – 2	Centrifuge- Types							
Unit – 3	Methodology of							

				1		
	centrifugation					
Unit – 4	applications.					
Module V:	Colorimetry and spectrophotometry.		To understand the principles of	Lecture Illustration	To make short note on	
Unit – 1	Beer-Lamberts law.		Colorimetry and	Discussion	Colorimetry and	
Unit – 2	Measurement of extinction		spectrophotometry		spectrophotometry	
Unit – 3	Calorimeters and spectrophotometers	2				
Unit – 4	Techniques and applications in biological and biochemical research.					
Unit – 5	Comparison between colorimetry and spectrophotometry					
Module VI:	Radioblology		To learn about Radiobiology	Lecture and Discussion	To make short note on	
Unit – 1	Autoradiography principles, types. Methods	2			Radiobiology	
Unit – 2	Autoradiography- applications in biological research.					
Module VII:	Immunochemistry		To understand Immunochemistry	Lecture Illustration	To make short note on Immune	
Unit – 1	Immune response	2		Discussion	response	
Unit – 2	Antigens- Antibodies.	-				
Unit – 3	Histo- incompatibility antigens					
Unit – 4	Structure of IgG.					
Unit – 5	immunochemical assays - RIA, ELISA.					
Module VII:	Cryobiology	1	To understand Cryobiology	Lecture and Discussion	To make short note on	
Unit – 1	Freeze drying (lyophilization) and Its applications				Cryobiology	

Teacher in Charge: Mrs. Sweety M. S.

BOT2C05: CYTOGENETICS, GENETICS, BIOSTATISTICS, PLANT BREEDING AND EVOLUTION

(1+1.5+1.5+1+1 = 6 hours)

Lecture Hours per week: 6, Credits: 5

Internal: 20%, External: 80%, Examination: 3 Hours

OBJECTIVES:

To study concepts of genetics, interaction of gene, different types of chromosomes, plant breeding techniques for crop improvement, statistical tools for analysis, interpretation and visualisation of data and concepts of evolution.

Cytogenetics

Module 1:

Cytogenetics of aneuplolds, euploids and structural heterozygotes: Effect of aneuploidy on phenotype. Transmission of monosomics and trisomics and their uses. Breeding behaviour and genetics of structural heterozygotes; translocation heterozygotes; Robertsonian translocation; B-A translocation. Karyotype- concepts and its importance. Structural chromosome aberrations- types and significance in evolution. Heteroploidy, aneuploidy, monosoly, trisomy (primary, secondary, tertiary and compensating). Nullisomy. Uses of aneuploidy in cytogenetics. Euploidy- autoploidy, alloploidy and segmental alopolyploicdiploidization. Role of aneuploidy and euploidy in evolution.

Module 2:

(4 hours)

(1 hour)

(1 hour)

(8 hours)

Molecular cytogenetics: Multigenic families and their evolution; in situ hybridizationconcept. Computer assisted chromosome analysis, chromosome micro-dissection and microcloning; flowcytometry.

Module 3:

Polytene and lampbrush chromosomes- cytogenetic importance.

Module 4:

Supernumerary chromosomes: B-chromosomes.

References:

1. Alberts B., D. Bray, J. Lewis, K. Roberts and J.D.Watson. Molecular Biology of the Cell Gartand Publishing Inc. NewYork.

2. AtherlyA.G., J.R. Girtonand J.F. McDonald. TheScience of Genetics.

SaundersCollegePublishing, Fort Worth, USA.

3. Burnharm C.R. Discussions in Cytogenetics. Burgess Publishing Co., Minnesota.

4. De RobertisE.D.P. and De RobertisE.M.F. Cell and Molecular Biology ISBN, HongKong.

5. Dupraw E.J. DNA and Chromosomes. Holt, Rinehart and Winston Inc. NewYork.

6. Hart D.L and E.W. Jones. Genetics: Principles and Analysis. Jones & Bartlett publishers, Massachusetts, USA.

7. Khush, G.S. Cytogenetics of Aneuploids. AcademicPress.

8. Karp G. Celland Molecular Biology: Concepts and Experiments. John Wiley & Sons, Inc.USA.

9. Lewin B. Gene. Oxford University Press, New York, USA.

10. Lewis R. Human Genetics: Concepts and Applications. WCB McGraw Hill, USA.

11. MalacinskiG.MandD.Freifelder.EssentialsofMolecularBiology.JonesandBastletPublishersInc.,L ondon

12. Rieger R., A.Michaelis and M.M.Green Glossary of Genetics and Cytogenetics -Classical and Molecular. Springer-Verlag, NewYork.

13. Swanson C.P., T. Merz, and J.W. Young. Cytogenetics. PrenticeHall.

Genetics

Module I:

Relevance of Mendelism in modern genetics. A critical evaluation of Mendelism on the basis of modern concept of genes.

Module II:

Linkage and gene mapping. Three- point test cross; linkage map; interference; tetrad analysis and centromere mapping. Linkage in humans. Pedigree analysis. Genetic recombination and mapping of genes in bacteria and bacteriophages.

Module III:

Mobile genetic elements: Transposable elements in bacteria. IS elements. Tn elements. Compsite transposon. Cepia and P elements in Drosophila. Ac, DS and Mu elements in maize. Retrotransposons- Molecular characteristics and significance in development and evolution.

Module IV:

Extranuclear inheritance: Analysis of mitochondrial and chloroplast genomes and their utility. Cytoplasmic male sterility.

Module V:

(2 hours)

Quantitative genetics: Polygenic inheritance, heritability and its measurements. QTL mapping. Module VI: (2 hours)

Population genetics: Systems of mating. The Hardy- Weinberg principle . Estimation of gene frequencies. Factors affecting equilibrium: natural selection, mutation, migration and genetic drift.

Module VII:

(3 hours) Human

genetics: Human pedigree analysis, Lod score for linkage testing. Karyotype; genetic disorders.

References:

- 1. Snustad, Simmons and Jenkins. Principles of Genetics. John Willey and Sons. Weaver and Hendrck. Genetics. Wm. C Brown Publishers.
- 2. Goodenough. Genetics. Saunders College Publishing. Stansfield. Theory and Problems of Genetics. Mc Grow Hills. Strlckberger. 3. Genetics. Macmillan.

(6 hours)

(1hours)

(2 hours)

(3 hours)

- 3. Burnet L.Essential Genetics. Cambridge University Press. Friefelder. Microbial Genetics. Narosa Publishing House.
- 4. Gardner, Simmons and Snustad. Principles of Genetics. John Wiley and Sons, New York, USA. Singh B.D. Fundamental of Genetics. Kalyani Publishers, New Delhi.

Biostatistics

Module I:	(1 hour)
The science of statistics and its applications in biological research.	
Module II:	(1 hour)
Types and collection of data- Census and sampling- theory and methods.	
Module III:	(2 hours)
Tabulation and presentation of data- diagrammatic and graphic presentation.	
Module IV:	(2 hours)
Analysis of data- central tendencies.	
Module V:	(2 hours)
Measures of dispersion - Range, quartile deviation, mean deviation, standard d	eviation and
standard error. Relative measures of dispersion - coefficient of variation.	
Module VI:	(2 hours)
Tests of significance- formulation and testing of hypothesis- testing the pro committing type 1 and type 2 errors. z test, t test, chi-square test.	bability of
Module VII:	(2 hours)
Analysis of variance- one way classification and two-way classification, F t	est, F value
calculation, F table.	
Module VIII:	(2 hours)
Correlation and Regression analysis- coefficient of correlation- significance to	esting. Rank
correlation. Lines of regression- coefficient of regression	
Module IX:	(2 hours)
Experimental designs- designing an experiment- CRD, RBD, LSD. Factorial exp	eriments.
Module X:	(2 hours)
Probability- application of the principles of probability- theorems of probability-	
Probability distributions- binomial, multinomial, normal and poisson distributions	
Module XI:	(1 hours)
Statistical softwares- SPSS, SPAR, MINITAB.	

References:

1. Chandal S.R.S. A Handbook of Agricultural Statistics. AchalPrakashanMandir, Kanpur, India.

2. Das M.N. and N.C. Giri. Designs and Analysis of Experiments. Wiley EasternLtd.

3. Elhance and Elhance. Fundamentals of Mathematical Statistics. KithabMahal, New Delhi,India.

4. Gupta S.K and V.K. Kapoor. Fundamentals of Mathematical Statistics. Sultan Chand & Sons,

NewDelhi.

5. Gupta C.B. An Introduction to Statistical Methods. VikasPublishing House Pvt.Ltd.

- 6. Kempthrone, O. An ntroduction to Genetic statistics. John Wiley and Sons Inc. NewYork.
- 7. Mather K. and J.L. Links. Biometrical Genetics. Chapman and Hall,London.
- 8. Panse, V.G and P. Sukatme. Statistical Methods for Agricultural Workers. ICAR, NewDelhi.
- 9. Rao C.A. Advanced Statistical Methods in Biometrical Research. Wiley and Sons, NewYork.
- 10. Singh P. and S.S. Narayanan. Biometrical Techniques in Plant Breeding. Kalyani Publishers, NewDelhi.

11. Singh R.K. and Chaudhary B.D. Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi.

12. Daniel W.W. Biostatistics- A foundation for Analysis in HealthSciences.

Plant breeding:

Breeding for special purposes: Resistance breeding- a brief account of disease resistance, pest resistance, stress resistance- achievements. Quality breeding- objectives

andachievements.

Module VIII:

Biometrical techniques in Plant Breeding- analysis of variability, heritability, genetic advance and combining ability.

Module IX:

IPR- Protection of plant variety and farmers'right Act

References:

1. Allard R.W. Principles of Plant Breeding. John Wiley and Sons, NewDelhi.

2. Chahal G.S. and Gosal S.S. Principles and Procedure of Plant Breeding. Narosa Publishing House, NewDelhi.

3. Jain H.K. and Kharkwal M.C. Plant Breeding- Mendelian to Molecular Approaches. Narosa Publishing House, New Delhi.

- 4. Roy D. Plant Breeding- Analysis and Exploitation of Variation. Narosa PublishingHouse.
- 5. Hayward M.D., Bosemark N.O. and Romagasa I. Plant Breeding- Principles and Prospects. Chapman & Hall.
- 6. Gupta S.K. Plant Breeding- Theory and Techniques. Agrobios (India), Jodhpur.
- 7. Khan M.A. Plant Breeding. Biotech Books, New Delhi.
- 8. Stoskopf N.C. Plant Breeding- Theory and Practice. Scientific Publishers (India), Jodhpur.
- 9. Sharma J.R. Principles and Practices of Plant Breeding. Tata McGrawHill.

10. Chopra V.L. Breeding Field Crops. Oxford & IBH.

11. MohananK.V. Essentials of Plant Breeding. PHI Ltd., NewDelhi.

12. MohananK.V. Essentials of Plantation Science. Penta Book Publishers, Calicut, Kerala.

Evolution

Module I: (3 hours)
The concept of evolution- evidences of evolution- geological time scale and evolution
Module II: (3 hours)
Origin of life- theories and experimental evidences- chemical evolution and biological
evolution.
Module III: (1 hours)
Evidences of evolution.
Module IV: (3 hours)
Theories of evolution- Pre-Darwinian, Darwinian and Post Darwinian theories- Modern
synthetic theory of evolution.
Module V: (1 hours)
Reproductive isolation and the origin of species.
Module VI: (3 hours)
Evolution at the molecular level.

(**1 hour**) v. geneti

(1 hour)

BOT2C05: CYTOGENETICS, GENETICS, BIOSTATISTICS, PLANT BREEDING AND EVOLUTION

(1+1.5+1.5+1+1 = 6 hours)

Lecture Hours per week: 6, Credits: 5

Internal: 20%, External: 80%, Examination 3 Hours

OBJECTIVES:

To study concepts of genetics, interaction of gene, different types of chromosomes, plant breeding techniques for crop improvement, statistical tools for analysis, interpretation and visualisation of data and concepts of evolution.

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
Module I: Cytogenetics of aneuplolds, euploids and structural heterozygotes. (8 hours)	Effect of aneuploidy on phenotype. Transmission of monosomics and trisomics and their uses. Breeding behaviour and genetics of structural heterozygotes; translocation heterozygotes; Robertsonian translocation; B-A translocation. Karyotype- concepts and its importance. Structural chromosome aberrations- types and significance in evolution.	Lecture Participative learning	Group discussion	To understand monosomy, trisomy and its applications, different types of translocations, human karyotype, chromosomal aberrations and its significance in evolution	Evaluation through test papers
	Heteroploidy, aneuploidy, monosoly, trisomy (primary,				

LESSON PLAN: CYTOGENETICS

PG Botany					
Module II: Molecular cytogenetics (4 hours)	secondary, tertiary and compensating). Nullisomy. Uses of aneuploidy in cytogenetics. Euploidy- autoploidy, alloploidy and segmental allopolyploic diploidization. Role of aneuploidy and euploidy in evolution Multigenic families and their evolution; in situ hybridization- concept. Computer assisted chromosome analysis, chromosome micro-dissection and micro-cloning; flow cytometry	Lecture Participative learning	Group discussion	TO understand about multigene families,insitu hybridization. To understand the importance of computer assisted chromosome analysis. To study the procedure of chromosome micro- dissection and micro- cloning and flow cytometry	Evaluation through test papers
Module III: Polytene and lampbrush chromosomes (1 hours)	Cytogenetic importance.	Lecture Participative learning	Discussion	To understand the structure of polytene and lampbrush chromosomes and its cytogenetic importance	Evaluation through test papers
Module IV: Supernumerary chromosomes (1 hours)	B-chromosomes	Lecture Participative learning	Discussion	To understand the structure and importance of B- chromosomes	Evaluation through test papers

LESSON PLAN: GENETICS

Unit/session/hour s (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessmen
Module I: Relevance of Mendelism in modern genetics (1 hours)	A critical evaluation of Mendelism on the basis of modern concept of genes.	Lecture Participative learning	Discussio n	To understand the role of Gregor Johann Mendel in Genetics and to study about modern and classical concept of genes	Evaluation through test papers
Module II: Linkage and gene mapping (6hours)	Three- point test cross; linkage map; interference; tetrad analysis and centromere mapping. Linkage in humans. Pedigree analysis. Genetic recombination and mapping of genes in bacteria and bacteriophages	Lecture Participative learning	Discussio n	To understand about linkage, how to draw a linkage mamand understand how,genetic recombination occur in bacteria and bacteriophages	Evaluation through test papers
Module III: Mobile genetic elements: (3 hours)	Transposable elements in bacteria. IS elements. Tn elements. Compsite transposon. Cepia and P elements in Drosophila. Ac, DS and Mu elements in maize. Retrotransposons- Molecular characteristics and significance in development and evolution.	Lecture Participative learning	Discussio n	To study about transposable elements in bacteria, drosophila maize and retrotransposons . To understand the procedure of transposition and its significance in evolution.	Evaluation through test papers Evaluation through test papers
Module IV:	Analysis of mitochondrial	Lecture	Discussio	To understand	Evaluation

PG Botany					
Extranuclear inheritance: (2 hours)	and chloroplast genomes and their utility. Cytoplasmic male sterility	Participative learning	n	the how inheritance transmited from one generation to other generation other than nucleus, its structure, cytoplasmic male sterility and its application	through test papers
Module V: Quantitative genetics (2 hours)	Polygenic inheritance, heritability and its measurements. QTLmapping.	Lecture Participative learning	Discussio n	To study about quantitative genetics, heritability, and the procedure of QTL mapping and its applications	Evaluation through test papers
ModuleVI: Population genetics: (2 hours)	Systems of mating. The Hardy-Weinberg principle. Estimation of gene frequencies. Factors affecting equilibrium: natural selection, mutation, migration and genetic drift.	Lecture Participative learning	Discussio n	To study about population genetics, and factors affecting population equilibrium	Evaluation through test papers
ModuleVII: Human genetics (3hours)	Human pedigree analysis, Lod score for linkage testing. Karyotype; geneticdisorders.	Lecture Participative learning	Discussio n	To study about human pedigree analysis, procedure of lod score, human karyotype and genetic disorders	Evaluation through test papers

٦

LESSON PLAN: BIOSTATISTICS

Unit/session/hours (Time required)	Topics for student preparation (Input	Procedure (Process) Student centric Method of teaching	Activity	Learning outcome (output)	Assessment
Module I: Introduction (1hours)	The science of statistics and its applications in biological research.	Lecture Participative learning	Discussion	To understand the role of statistics in biological research	Evaluation through test papers
Module II: Types and collection of data (1hours)	Census and sampling- theory and methods.	Lecture Participative learning	Discussion	To study about theory and methods of census and sampling	Evaluation through test papers
Module III: Tabulation and presentation of data (2 hours)	Diagrammatic and graphical presentation	Lecture Participative learning Problem solving	Discussion	To understand about diagrammatic and graphic methods of data	Evaluation through test papers
Module IV: Analysis of data (2hours)	Central tendencies.	Lecture Participative learning Problem solving	Discussion	To understand about types of central tendencies	Evaluation through test papers
Module V: Measures of dispersion (2hours)	Range, quartile deviation, mean deviation, standard deviation and standard error. Relative measures of dispersion - coefficient ofvariation.	Lecture Participative learning Problem solving	Discussion	To understand about range, mean deviation, standard deviation standard error and Relative measures of dispersion	Evaluation through test papers
Module VI: Tests of significance (2 hours)	formulation and testing of hypothesis- testing the probability of committing type 1	Lecture Participative learning Problem solving	Discussion	To understand the significance of z test, t test, chi-square test	Evaluation through test papers

and type 2 errors. z test, t test, chisquare test Module VII: Discussion Lecture To understand Evaluation one way Analysis of classification Participative about analysis of through test variance and two-way learning variance papers (2 hours) classification, Problem F test, F value solving calculation, F table Module VIII: coefficient of TO umderstand Lecture Discussion Evaluation correlation-Participative the relation **Correlation and** through test **Regression analysis** significance between learning papers (2 hours) testing. Rank Problem dependent and correlation. Lines solving independent of regressionvariables coefficient of regression Module IX: Lecture Discussion Evaluation designing an Experimental experiment- CRD, Participative through test RBD, LSD. designs learning papers Factorial (2 hours) experiments. Module X: Application of Lecture Discussion To understand Evaluation **Probability** the principles of Participative the significance through (2 hours) probabilitylearning and application Q&A theorems of of probability probabilityapplications-Probability distributionsbinomial. multinomial, normal and poisson distributions. Module XI: SPSS, SPAR, Lecture Discussion To understand Evaluation Statistical MINITAB. Participative the role of SPSS, through test SPAR, softwares learning papers (1hour) MINITAB in biological research

PG Botany

LESSON PLAN: PLANT BREEDING

Unit/session/ho urs (Time required) Module I: Introduction and objectives (1hour)	Topics for student preparation (Input Introduction and objectives of plant breeding	Procedure (Process) Student centric Method of teaching Lecture Participative learning	<i>Activity</i> Discussion	Learning outcome (output) To understand about the importance of plant breeding in crop improvement	Assessment Evaluation through Q&A
Module II: Organizations involved in plantbreeding. (1hour)	Organizations involved in plant breeding.	Lecture Participative learning	Discussion	To understand about the organisations actively involved in plant breeding	Evaluation through test papers
Module III: Breeding systems in sexually propagated plants (1hour)	Floral Biology and its significance in plant breeding. Sterility and incompatibility systems.	Lecture Participative learning	Discussion	To understand the significance of floral biology in plant breeding	Evaluation through Q&A
Module IV: Genetic resources (1hour)	centers of crop genetic diversity. In situ and ex situ conservation; cryopreservation of germplasm.	Lecture Participative learning	Discussion	To understand about centers of crop genetic diversity, different types of conservation and cryopreservatio n	Evaluation through Q&A
Module V: Conventional methods of plantbreeding: (1hour)	Domestication of wild plants- changes under domestication. Plant introduction- history, types, principles, plant introduction agencies in India- rules and regulations. Major achievements	Lecture Participative learning	Discussion	To understand the importance and applications of conventional methods of plant breeding like hybridizationh eterosis	Evaluation through test paper

	segregatingpopulation s.Major achievements.				
	s.Major achievements. Hybridization- history,				
	objectives, techniques,				
	consequences, and				
	major achievements.				
	Heterosis breeding-				
	genetic basis of				
	heterosis and				
	inbreeding depression.				
Module VI:	Mutation breeding-	Lecture	Discussion	To understand	
Modern	history, methodology,	Participative		the	Evaluation
methods of	applications, merits,	learning		methodolgy	through
plantbreeding	demerits and			and	Q&A
(3hours)	achievements.			applications of mutation	
	Polyploidy breeding- methodology,			breeding,&	
	applications, merits,			polyploidy	
	demerits and			breeding. To	
	achievements.			understand the	
	Biotechnological			significance of	
	approaches in plant			molecular	
	breeding- Molecular			markers and	
	markers and their			their use in	
	uses- Transgenic			plant breeding.	
	plants- critical			To understand	
	evaluation.			about	
				transgenic	
				plants and their	
				role in plant	
				breeding	
	Resistance breeding- a			To understand	
Module VII:	brief account of	Lecture		about the	
Breeding for	disease resistance, pest	Participative	Discussion	significance of	Evaluation
special purposes	resistance, stress	learning		resistance	through
(2 hours)	resistance-			breeding,	Q&A
	achievements. Quality			Quality	
			1	breeding and	
	breeding- objectives			-	
	and achievements.			their	
				their objectives&	
				their	

- Biometrical	Analysis of variability,	Participative		significance of	through
techniques in	heritability, genetic	learning		variability	Q&A
Plant Breeding	advance and	_		,heritability,	
(1hour)	combining ability.			genetic	
				advance and	
				combining	
				ability	
Module IX:	Protection of plant	Lecture		To understand	
	variety and farmers'	Participative	Discussion	the importance	Evaluation
IPR	right act.	learning		of IPR and	through
(1hour)				farmers right	Q&A
				act	

LESSON PLAN: EVOLUTION

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning outcome (out put)	Assessment
Module I: The concept of evolution. (3 hours)	Evidences of evolution- geological time scale and evolution.	Lecture Participative learning	Discussion	To understand about geological time scale and concept of evolution	Evaluation through Q&A
Module II: Origin of life- (3 hours)	Theories and experimental evidences- chemical evolution and biological evolution.	Lecture Participative learning	Discussion	To understand about the theories and experimental evidences of evolution	Evaluation through test paper
Module III: Evidences of evolution. (1 hour)	Evidences of evolution.	Lecture Participative learning	Discussion	To understand about the evidences of evolution	Evaluation through test paper
Module IV: Theories of evolution (3 hours)	Pre-Darwinian, Darwinian and Post Darwinian theories- Modern synthetic theory of evolution.	Lecture Participative learning	Discussion	To understand about the Theories of evolution i.e, pre darwinian, Darwinian and post Darwinian theories.	Evaluation through Q&A

Module V: Reproductive isolation and the origin of species. (1 hour)	Reproductive isolation and the origin of species	Lecture Participative learning	Discussion	To understand the significance of reproductive isolation and the origin of species	Evaluation through Q&A
Module VI: Evolution at the molecularlevel (1 hour)	Evolution at the molecular level.	Lecture Participative learning	Discussion	To understand the evolution at the molecular level	Evaluation through Q&A

COURSE OUTCOMES

The students who complete this course will be able to:

со	CO Statement
CO1	Explain the importance of ecosystem, biodiversity and energy flow.
CO2	Identify the phytogeographical distribution patterns of Plants.
CO3	Recognize the different forest types and products and major and minor forest products for sustainable utilization of bio-resources.
CO4	Apply new strategies for in situ and ex situ conservation of biodiversity
CO5	Identify the population characteristics and its significance.
CO6	Identify the threatened plants and threats to global environment.
C07	Demonstrate skill for Environmental Impact Assessment and awareness to Environmental laws.
CO8	Evaluate the role of different biodiversity conservation ventures at local/national and global levels.

BOT2C05: CYTOGENETICS, GENETICS, BIOSTATISTICS, PLANT

BREEDING AND EVOLUTION

(1+1.5+1.5+1+1 = 6 hours)

Lecture Hours per week: 6, Credits: 5

Internal: 20%, External: 80%, Examination 3 Hours

UNITWISE BREAK UP: CYTOGENETICS

LECTURE HOURS: 14

OBJECTIVE:

a. To understand the different chromosomal aberrations, chromosomal mechanisms and modern method of chromosome analysis.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Cytogenetics of aneuplolds, euploids and structural heterozygotes	8	Check the knowledge of aneuploids and euploids	Lecture and discussion	To make short note on Monosomy and trisomy
Unit – 1	Effect of aneuploidy on phenotype. Transmission of monosomics and trisomics and their uses.		Check the knowledge of monosomy and trisomy,	Lecture and discussion Illustration	
Unit – 2	Breeding behaviour and genetics of structural heterozygotes; translocation heterozygotes; Robertsonian translocation; B-A translocation		translocation,		
Unit – 3	Karyotype- concepts and its importance		Check the knowledge of human	Lecture and discussion	
Unit – 4	Structural chromosome aberrations- types and significance in evolution.		karyotype Check the knowledge of chromosomal aberrations	Illustration	

PG Botany					
Unit-5	Heteroploidy, aneuploidy, monosoly, trisomy (primary, secondary, tertiary and compensating). Nullisomy. Uses of aneuploidy in cytogenetics		Check the knowledge of monosomy.trisomy and nullisomy	Lecture and discussion	
Unit-6	Euploidy- autoploidy, alloploidy and segmental alopolyploicdiploidization. Role of aneuploidy and euploidy in evolution		Check the knowledge of polyploidy	Lecture and discussion	To make short note on polyploidy
Module II:	Molecular cytogenetics:	4			
Unit – 1	Multigenic families and their evolution;		Check the	Lecture and discussion	To make short note on
Unit – 2	in situ hybridization- concept.		knowledge of multigene families	aiseassion	Insitu hybridization,
Unit – 3	Computer assisted chromosome analysis, chromosome micro-dissection and micro-cloning;		Check the knowledge ofcomputer assisted		chromosome microdissection and microcloning
Unit – 4	Flow cytometry		techniques		
Module III:	Polytene and lamp brush chromosome	1	Check the knowledge of polytene and lampbrush chromosomes	Lecture and discussion	To make short note on Polytene and lampbrush chromosome Draw doagrams
Unit – 1	Cytogenetic importance of Polytene and lamp brush chromosomes				
Module IV:	Supernumerary chromosomes	1	Check the knowledge of B chromosomes	Lecture and discussion	To make short note on B- chromosomes
Unit – 1	B-chromosomes				

UNITWISE BREAK UP: GENETICS

LECTURE HOURS: 19

OBJECTIVE:

a. To understand the role of genetics in human life, the mechanism of linkage, crossing over, pedigree analysis, maternal inheritance, karyotype and genetic disorders.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Relevance of Mendelism in modern genetics		To read about the life history		To make a short
Unit – 1	A critical evaluation of Mendelism on the basis of modern concept of genes	1	of Mendel and his contribution to genetics	Lecture and discussion	note on laws of Mendel
Module II:	Linkage and gene mapping Three- point test cross;				
Unit – 1 Unit – 2	linkage map; interference;tetrad analysis and	6	To check the knowledge of linkage, three		Problems on linkage,
Unit – 3	centromere mappingLinkage in humans.Pedigree analysisGenetic recombination		point test cross, genetic recombination	Lecture discussion and	interference coincidence and tetrad analysis
Unit-4	and mapping of genes in bacteria and bacteriophages		methods in bacteria	illustrations	
Module III	Mobile genetic elements:	3	To check the		To make a short
Unit – 1	Transposable elements in bacteria. 1S elements. Tn elements. Compsite transposon		knowledge of transposable elements	Lecture discussion and illustrations	note on transposons and retrotransposons
Unit – 2	Copia and P elements in Drosophila. Ac, DS and Mu elements in maize.				
Unit-3	Retrotransposons- Molecular characteristics and significance in development and				

	evolution				
	Extra nuclear inheritance				
Module IV:					
		2	To read about	Lecture	To make short
			maternal	discussion	note on
	Analysis of		inheritance	and	cytoplasmic
TT 1 1	mitochondrial and			illustrations	inheritance
Unit-1	chloroplast genomes and				
	their utility.				
	Cytoplasmic male				
Unit-2	sterility	2	To read an	Lecture and	To make short
Module V	Quantitative genetics	2	example of	discussion	note on
			quantitative		quantitative
	Polygenic inheritance		genetics		genetics
Unit-1					
	Heritability and its				
Unit-2	measurements. QTL				
	mapping.				
Module VI	Population genetics				
	Sustains of	2	To read about	Lecture and	To make short
Unit-1	Systems of mating. The	2	Hardy-	discussion	note on
Unit-1	Hardy-		Weinberg	uiscussion	population
	Weinberg		principle		genetics
	principle		principie		genetics
	Estimation of gene				
	frequencies. Factors				
Unit-2	affecting equilibrium:				
UIIIt-2	equilibrium: natural				
	selection,				
	mutation,				
	migration				
	and genetic drift.				
Module VII	Human genetics		To understand	Lecture	To make a short
Unit-1	Human pedigree analysis	3	about pedigree	discussion	note on human
Unit-2	Lod score for linkage	-	analysis and	and	karyotype and
0111-2	testing. Karyotype		check the	illustrations	genetic disorder
Unit-3	Genetic disorders.		knowledge		5 alboradi
Unit-5			about genetic		
			disorders	1	1
UNITWISE BREAK UP: BIOSTATISTICS

LECTURE HOURS: 19

OBJECTIVE:

a. To understand the role and application of statistics in biological research.

Module	Topic	No. of	Pre-class	Pedagogy	Out of class
Number		Lecture	activity	(in class)	assignment
		Hours			
Module I:	Introduction	•	Check	x , 1	To make a short
Unit – 1	The science of	1	knowledge about	Lecture and discussion	note on
	statistics and its	1	applications	discussion	applications of biostatistics
	applications in		of		biostatistics
	biological research		biostatistics		
			orostaristics	Lecture	To make a short
Module II:	Types and collection of	1	To read about	discussion and	note on Census
	data		data types	illustrations	and sampling-
Unit – 1					theory and
	Census and sampling-				methods
	theory and methods				
Module III:			To learn	Lecture	To make a short
	Tabulation and	2	about	discussion and	note on graphic
	presentation of data		presentation	illustrations	presentation of
** • •			of data		data
Unit – 1	diagrammatic and				
Module IV:	graphic presentation		To read about	Lecture and	Central
Module IV:	A polyais of data	2	central	discussion	tendencies
Unit – 1	Analysis of data Central tendencies		tendencies	discussion	problems
Ollit – I	Central tendencies		tendencies		problems
Module V:			To read about	Lecture and	Measures of
	Measures of dispersion	2	measures of	discussion	dispersion
			dispersion		problems
Unit – 1	D				
	Range, quartile				
	deviation, mean deviation, standard				
	deviation, standard				
	error.				
Unit – 2	Relative measures of				
	dispersion - coefficient				
	of variation				
Module VI:					
	Tests of significance	2			
Unit – 1	formulation and				

	testing of hypothesis-		Check the	Lecture and	Problems on chi
	testing the probability		knowledge	discussion	
	°		about	discussion	square test
	of committing type 1				
	and type 2 errors	-	probability		
Unit – 2	z test, t test, chi-				
	square test			-	
Module VII:			To realize the	Lecture	Analysis of
	Analysis of variance	2	applications	discussion and	variance
Unit – 1	one way classification		of ANOVA	illustrations	problems
	and two-way		in biological		
	classification	-	experiment		
Unit – 1	F test, F value				
	calculation, F table				
Module VIII:			Check the	Lecture	Correlation and
	Correlation and	2	knowledge	discussion and	regression
	Regression analysis		about	illustrations	problems
Unit – 1	coefficient of	1	correlation		
	correlation-		and		
	significance testing.		regression		
	Rank correlation		Ū.		
Unit – 1	Lines of regression-				
	coefficient of				
	regression				
Module IX	0	2	To read about	Lecture	To make a short
	Experimental	_	experimental	discussion and	note on
	designs-		designs	illustrations	experimental
			8		designs
Unit – 1	designing an				
	experiment- CRD,				
	RBD, LSD.				
Unit – 2	Factorial experiments	-			
Module X		2			
moune x	Probability	2			
Unit – 1	application of the	1	To realize the		
$\operatorname{OIII} - 1$	principles of		importance of	Lecture	Probability
	probability- theorems		probability in	discussion and	problems
	of probability-		biostatistics	illustrations	problems
			biostatistics	mustrations	
Unit 2	applications Probability	-			
Unit – 2	Probability distributions-				
	binomial,				
	multinomial, normal				
	and poisson				
	distributions.				
Module XI	Statistical softwares			Lecture and	To make a short
wiouule Al	Staustical softwares	1			
		1		discussion	note on SPSS,

Unit – 1	SPSS,SPAR,	To read about	SPAR and
	MINITAB.	statistical soft	MINITAB
		wares	

UNITWISE BREAK UP: PLANT BREEDING

LECTURE HOURS: 16

OBJECTIVE:

a. To understand conventional and modern methods of plant breeding to improve crop development.

Module Numbe r	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I: Unit – 1	Introduction Introduction and objectives.	1	To realize about applications of plant breeding in crop improvement	Lecture and discussion	To make a short note on applications of plant breeding
Module II Unit – 1	Organizations involved in plant breeding. Organizations involved in plant breeding.	1	To read about Organizations involved in plant breeding	Lecture and discussion	To make a short note on Organizations involved in plant breeding.
Module III: Unit – 1	Breeding systems in sexually propagated plants Floral Biology and its significance in plant breeding. Sterility and incompatibility systems	1	To learn about floral biolgy and its significance	Lecture discussion	To make a short note on Floral Biology and its significance
Module IV:	Genetic resources		To read about insitu and ex situ conservation; cryopreservation of germplasm	Lecture and discussion	To make a short note on cryopreservation

Unit – 1	centers of crop genetic diversity. In situ and ex situ conservation; cryopreservation of germplasm				
Module V:	Conventional methods of plantbreeding	. 5	To read about Conventional	Lecture and discussion	To make a short note on
Unit-1	Domestication of wild plants- changes under domestication.		methods of Plant breeding		Conventional methods of plantbreeding
Unit-2	Plant introduction- history, types, principles, plant introduction agencies in India- rules and regulations. Major achievements				
Unit-3	Selection- selection methods in sexually and vegetatively propagated species.Selection in segregatingpopulati ons.Major achievements				
Unit-4	Hybridization- history, objectives, techniques, consequences,and major achievements				
Unit-5	Heterosis breeding- genetic basis of heterosis and inbreeding depression				
Module VI:	Modern methods of plantbreeding	3	To learn about modern methods of plant breeding	Lecture and discussion	To make a short note on Modern methods of

Unit-1	Mutation breeding-				Plant breeding
0	history,				Molecular markers
	methodology,				and Transgenic
	applications,				plants
	merits, demerits				piulits
	and achievements				
Unit-2	Polyploidy				
C 2	breeding-				
	methodology,				
	applications,				
	merits, demerits				
	and achievements				
Unit-3	Biotechnological				
	approaches in plant				
	breeding-				
	Molecular markers				
	and their uses-				
	Transgenic plants-				
	critical evaluation.				
Module	Breeding for		To check knowledge	Lecture and	To make a short
VII	special purposes	2	about resistance and	discussion	note on resistance
Unit-1	Resistance		quality breeding		breeding
	breeding- a brief				
	account of disease				
	resistance, pest				
	resistance, stress				
	resistance-				
	achievements.				
Unit-2	Quality breeding-				
	objectives and				
	achievements				
Module	Biometrical	1	To learn about	Lecture and	To make a short
VIII:	techniques in Plant		heritability	discussion	note on Biometrical
-	Breeding		-		techniques
Unit-1	Analysis of				
	variability,				
	heritability, genetic				
	advance and				
	combining ability				
Module-	IPR	1		Lecture and	
IX				discussion	To make a short
Unit-	Protection of plant		To learn about IPR		note on IPR
	-				
	variety and				

UNITWISE BREAK UP: EVOLUTION

LECTURE HOURS: 12

OBJECTIVE:

a. To learn about concept, theories, evidences, and evolution at molecular level

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	The concept of evolution	3	To read about concept of evolution	Lecture and discussion	To write a assignment on The concept of evolution,
Unit – 1	The concept of evolution.				Evidences of evolution, and geological time
Unit – 2	Evidences of evolution				scale
Unit – 3	geological time scale and evolution				
Module II:	Origin of life	3	To read about urey miller		To write a
Unit – 1	Theories and experimental evidences		experiment of evolution	Lecture discussion	assignment on origin of life and biological evolution
Unit-2	chemical evolution				
Unit-3	biological evolution				
Module III:	Evidences of evolution	1	To read about evidences of evolution	Lecture and discussion	To write a assignment on different
Unit – 1	Evidences of evolution				evidences on evolution
Module IV:	Theories of evolution	3	To read about Theories of evolution	Lecture and	To write a assignment on Theories of
Unit – 1	Pre-Darwinian theories			discussion	evolution
Unit – 2	Darwinian theories				
Unit – 3	Post Darwinian theories- Modern synthetic theory of				

Module V: Unit-1	evolution. Reproductive isolation and origin of species Reproductive isolation and origin of species	1	To read about Darwin's origin of species	Lecture and discussion	To write a assignment on Reproductive isolation and origin of species
Module VI:	Evolution at molecular level	1	To read about molecular	Lecture and discussion	To write a assignment on
Unit-1	Evolution at molecular level		evolution		Evolution at molecular level

Teacher in Charge: Mrs. Sabeena A. M.

BOT2C06: PLANT ECOLOGY, CONSERVATION BIOLOGY, PHYTOGEOGRAPHY AND FOREST BOTANY

(2.5+1.5+1+1=6 hours)

Lecture Hours per week: 6, Credits: 5

Internal: 20%, External: 80%, Examination: 3 Hours

OBJECTIVES:

- a. To familiarize student with the ecological principals that link individuals at populations, community, landscape, and ecosystem levels.
- b. To enable the students to evaluate the role of different biodiversity conservation ventures at local/national and global level.
- c. To enable students to recognize the different forest types and products, major and minor products for sustainable utilization of bio-resources.
- d. To able to identify the phytogeographical distribution patterns of plants.

Plant Ecology & Conservation Biology

Module I:

Habitat Ecology: Salient features of terrestrial (Biomes), fresh water (Limnology), wet land and marine habitats.

Module II:

Productivity and Energy flow: Concepts, limits and process of primary production; methods of productivity measurements: global trends in primary productivity, energy flow models.

Module III:

Population characteristics: density, natality, mortality, distribution, biotic potential, carrying capacity, aggregation and dispersal, ecotone and edge effect.

Module IV:

The environment and its pollution- types (land, air and water). Effect on living organisms. Control with emphasis on biological methods. Environmental hazards.

Module V:

Threats to the global environment- greenhouse effect, ozone depletion, El-Nino and La Nina effects.

Module VI:

Environment impact assessment (EIA) and assessment of environmental hazards- remote sensing.

Module VII:

Problems of conservation; causes of threat to environment- human interference, deforestation, habitat destruction, overexploitation of resources.

Module VIII:

ldentification of threatened plants; red list categories- extinct, endangered, vulnerable, rare and out of danger. Extinction process. Hot spots, keystone species and flagship species.

Module IX:

Strategies for conservation: in situ and ex situ conservation, biosphere reserve, national parks, wildlife sanctuaries. Gene banks, cryopreservation, seed banks.

[3 Hours]

[5 Hours]

[5 Hours] organisms

[3 Hours]

[3 Hours]

[5 Hours]

[5 Hours]

[6 Hours]

[3 Hours]

Module X:

Afforestation- social forestry, agroforestry. International biological programme (IBP), Man and biosphere programme (MAB), IUCN, world environment day, wildlife preservation act (1972), Indian forest (conservation) act (1980) and United Nations Environment Programme. Environment Protection Acts.

Module XI:

Environmental awareness- role of government and NGOs. -Gaia hypothesis

Module XII:

Biodiversity- significance at Local, National and Global levels. Deep ecology (Paradigm shift from anthropocentric ecology to ecocentric ecology. National heritages.

References:

- 1. Negi, S.S. Handbook of National Parks and Sanctuaries in India.
- 2. M.P. Nair and P.K Sastry Red data book of Indian plants.
- 3. Mehrotra and B.K Suri Remote sensing for environment and forest management.
- 4. Negi S.S Biosphere reserves in India.
- 5. Lucas and Synge IUCN Red data book. IUCN, Stockholm
- 6. Dasman R.F Environmental Conservation.
- 7. Odum E.P. Fundamentals of ecology
- 8. Odum E.P. Basic principles of ecology
- 9. Misra K.R. Ecology workbook.
- 10. Puri G.S. Indian Forest Ecology Volumes I and Il. Oxford & IBH.
- 11. Clarke G.L Elements of Ecology.
- 12. Chhatwal G.L. Encyclopedia of environmental biology.
- 13. Ray P.K. Pollution and Health. Willey-Eastern Ltd, New Delhi.
- 14. MichaeL P.- Ecological methods for field and laboratory investigations. Tata McGraw Hill, New Delhi.
- 15. Kershaw K.A. Quantitative and Dynamic Plant Ecology. ELBS.

Phytogeography

Module I:

Patterns of plant distribution: continuous distribution: circumpolar, circumboreal, circum austral, pan tropical.

Module II:

Discontinuous distribution: Theory of land bridges, theory of continental drift, theory of glaciation.

Module III:

Endemic distribution (neoendemic, paleoendemic), age and area hypothesis.

Module IV:

[6 Hours]

[3 Hours]

Phytochoria of world and India.

[5 Hours]

[2 Hours]

[3 Hours]

[4 Hours]

[3 Hours]

References:

- 1. Ronald Good. The geography of flowering plants. Lcngmans.
- 2. Bharucha F.R. A textbook of plant geography of India. Oxford University Press.
- 3. Puri G.S. Indian Forest Ecology, Vol I, ll. Oxford, New-Delhi

Forest Botany

Module I:

[3 Hours]

Forest- Definitions. Study of various types of forests in the world and in India.

Module II:

[10 Hours]

Forest products- Major and minor with special reference to Kerala.

Module III:

[3 Hours]

Influence of forests on environment. Consequence of deforestation and industrializationsustainable utilization of bioresources.

References:

1. Agarwal A. P. Forests in India. Oxford & IBH.

2. Gregorv G. R. Forest products, production, trade and consumption, quantity and value of raw materials requirements. Ford foundation, New-Delhi.

3. Puri G.S. Indian Forest Ecology Vol. 1& 11. Oxford & IBH.

4. Champion G. H. and Seth S.K. A revised survey of the forest types of India.

BOT2C06: PLANT ECOLOGY, CONSERVATION BIOLOGY, PHYTOGEOGRAPHY AND FOREST BOTANY

(2.5+1.5+1+1=6 hours)

Lecture Hours per week: 6, Credits: 5

Internal: 20%, External: 80%, Examination 3 Hours

OBJECTIVES:

- a. To familiarize student with the ecological principals that link individuals at populations, community, landscape, and ecosystem levels.
- b. To enable the students to evaluate the role of different biodiversity conservation ventures at local/national and global level.
- c. To enable students to recognize the different forest types and products, major and minor products for sustainable utilization of bio-resources.
- d. To able to identify the phytogeographical distribution patterns of plants.

LESSON PLAN: PLANT ECOLOGY & CONSERVATION BIOLOGY

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
Module I: Habitat Ecology: [3 Hours]	Salient features of terrestrial (Biomes), fresh water (Limnology), wet land and marine habitats.	 Lecture Discussion Participative learning 	Group Discussion	To understand the salient features of habitat ecology	Evaluation through the test paper
Module II: Productivity and Energy flow: [5 Hours]	Concepts, limits, and process of primary production; methods of productivity measurements: global trends in primary productivity, energy flow models.	 Discussion Participative learning 	Group Discussion	To understand the productivity and Energy flow:	Evaluation through the test paper
Module III: Population characteristics: [3 Hours]	Density, natality, mortality, distribution, biotic potential, carrying	 Discussion Participative learning 	Group Discussion	To understand the population characteristics	Evaluation through the test paper

PG Botany					
	capacity, aggregation and dispersal, ecotone and edge effect.				
Module IV: The environment and its pollution- [5 Hours]	Types (land, air and water). Effect on living organisms. Control with emphasis on biological methods. Environmental hazards.	 Discussion Participative learning 	Group Discussion	To understand the environment and its pollution and effect on living organisms. Control with emphasis on biological methods.	Evaluation through the test paper
Module V: Threats to the global environment- [3 Hours]	Greenhouse effect, ozone depletion, El- Nino and La Nina effects.	 Discussion Participative learning 	Group Discussion	To understand the impact of Greenhouse effect, ozone depletion, El- Nino and La Nina effects.	Evaluation through the test paper
Module VI: Environment impact assessment (EIA) and assessment of environmental hazards- [3 Hours]	EIA and assessment of environmental hazards and remote sensing.	 Lecture Discussion Participative learning 	Peer Group Discussion	To understand the importance of EIA	Evaluation through the test paper
Module VII: Problems of conservation; causes of threat to environment- [5 Hours]	Human interference, deforestation, habitat destruction, overexploitation of resources.	 Discussion Participative learning 	Group Discussion	To understand the causes of threat to environment	Evaluation through the Q&A session
Module VIII: Identification of threatened plants; red list categories- [5 Hours]	Extinct, endangered, vulnerable, rare and out of danger. Extinction process. Hot spots, keystone species and flagship species.	 Discussion Participative learning 	Group Discussion	To understand the identification of threatened plants; red list categories	Evaluation through the test paper

Module IX: Strategies for conservation: [6 Hours]	In situ and ex situ conservation, biosphere reserve, national parks, wildlife sanctuaries. Gene banks, cryopreservation, seed banks.	 Discussion Participative learning 	Group Discussion	To understand the conservation strategies	Evaluation through the test paper
Module X: Afforestation- [5 Hours]	Social forestry, agroforestry. International biological programme IBP, MAB, IUCN, world environment day, wildlife preservation act (1972), Indian forest (conservation) act (1980) and United Nations Environment Programme. Environment Protection Acts.	Discussion Participative learning	Group Discussion	To understand the importance of Social forestry and agroforestry and also the rules to protect forests	Evaluation through the test paper
Module XI: Environmental awareness- [2 Hours]	Role of government and NGOsGaia hypothesis	 Lecture Discussion Participative learning 	Group Discussion	To understand the Role of government and NGOs	Evaluation through the Q&A sessior
Module XII: Biodiversity- [3 Hours]	Significance at Local, National and Global levels. Deep ecology (Paradigm shift from anthropocentric ecology to ecocentric ecology. National heritages.	 Lecture Discussion Participative learning 	Group Discussion	To understand the Significance of biodiversity	Evaluation through the test paper

LESSON PLAN: PHYTOGEOGRAPHY

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
Module I: Patterns of plant distribution: [3 Hours]	Introduction continuous distribution: circumpolar, circumboreal, circum austral, pan tropical.	 Discussion Participative learning 	Group Discussion	To understand the continuous patterns of the plant distribution	Evaluation through the test paper
Module II: Discontinuous distribution: [4 Hours]	Theory of land bridges, theory of continental drift, theory of glaciation.	 Discussion Participative learning 	Group Discussion	To understand the discontinuous patterns of the plant distribution and related theories.	Evaluation through the Q&A session
Module III: Endemic distribution: [3 Hours]	Neoendemic, paleoendemic, age and area hypothesis.	 Lecture Discussion Participative learning 	Group Discussion	To understand the Endemic distribution and its types.	Evaluation through the test paper
Module IV: Phytochoria of world and India. [6 Hours]	World and India.	 Lecture Discussion Participative learning 	Group Discussion	To understand Phytochoria of world and India.	Evaluation through the test paper.

LESSON PLAN: FOREST BOTANY

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
Module I:	Definitions. Study	 Discussion 	Group	To understand	Evaluation
Forest-	of various types of	Participative	Discussion	various types of	through the
[3 Hours]	forests in the world	learning		forests in the	Q&A session
	and in India.			world and in	

50 | Page

PG Botany					
				India.	
Module II:	Major and minor	• Lecture	Group	To understand	Identification
Forest products-	with special	 Discussion 	Discussion	Various Major	Evaluation
[10 Hours]	reference to Kerala.	 Participative 		and minor	through the
		learning		products (special	test paper.
				reference to	
				Kerala)	
Module III:	Consequence of	 Discussion 	Group	To understand	Evaluation
Influence of forests	deforestation and	 Participative 	Discussion	Consequence of	through the
on environment-	industrialization-	learning		deforestation	test paper.
[3 Hours]	sustainable			and	
	utilization of			industrialization-	
	bioresources.			sustainable	
				utilization of	
				bioresources.	

COURSE OUTCOMES

The students who complete this course will be able to:

СО	CO Statement
CO1	Explain the importance of ecosystem, biodiversity, and energy flow.
CO2	Identify the phytogeographical distribution patterns of Plants.
CO3	Recognize the different forest types and products and major and minor forest products for sustainable utilization of bio-resources.
CO4	Apply new strategies for in situ and ex situ conservation of biodiversity
CO5	Identify the population characteristics and its significance.
CO6	Identify the threatened plants and threats to global environment.
C07	Demonstrate skill for Environmental Impact Assessment and awareness to Environmental laws.
CO8	Evaluate the role of different biodiversity conservation ventures at local/national and global levels.

51 | Page

BOT2C06: PLANT ECOLOGY, CONSERVATION BIOLOGY, PHYTOGEOGRAPHY AND FOREST BOTANY

(2.5+1.5+1+1=6 hours)

Lecture Hours per week: 6, Credits: 5

Internal: 20%, External: 80%, Examination 3 Hours

UNITWISE BREAK UP: PLANT ECOLOGY & CONSERVATION BIOLOGY

LECTURE HOURS: 48

OBJECTIVE:

- a. To familiarize student with the ecological principals that link individuals at populations, community, landscape, and ecosystem levels.
- *b. To enable the students to grasp the importance of ecosystem, biodiversity, and energy flow.*
- c. To enable the students to Identify the threatened plants and threats to global environment and Apply new strategies for in situ and ex situ conservation of biodiversity.
- *d.* To enable the students to evaluate the role of different biodiversity conservation ventures at local/national and global level.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Habitat Ecology: Salient features of -	3			
Unit – 1	Terrestrial (Biomes)		Check the	Lecture and	To make short
Unit – 2	Fresh water (Limnology)		knowledge in salient features	Discussion	notes on salient features of
Unit – 3	Wet land				habitat ecology
Unit – 4	Marine habitats.				
Module II:	Productivity and	5			
	Energy flow:				
Unit – 1	Concepts				To make short
Unit – 2	Limits and process of primary production;		Check the knowledge in	Lecture, discussion, and	notes on Energy flow models.
Unit – 3	Methods of		concepts of productivity	Illustration	
	productivity		and energy		
	measurements		flow		
Unit – 4	Global trends in primary productivity				

PG Botany Unit – 5 Energy flow models. Module III: 3 **Population** characteristics: To make detailed Unit -1Density, natality, To read about Lecture and Population Discussion notes on mortality, characteristics Population distribution, biotic characteristics potential, carrying capacity, aggregation and dispersal Unit – 2 ecotone and edge effect. Module IV: The environment 5 and its pollution-Unit – 1 To understand Lecture and To make detailed Pollution- types Discussion the importance notes on (land, air and water). of the effect of Pollution- types Unit -2Effect on living pollution and (land, air and organisms. control water). Unit – 3 Control with measures Effect on living emphasis on organisms. Control with biological methods. emphasis on Unit – 4 Environmental biological hazards. methods. Module V: Threats to the global 3 environment: Greenhouse effect To make short Unit - 1Check the Lecture and knowledge in Discussion notes on Unit -2Ozone depletion threats to the Greenhouse Unit – 3 El-Nino and La Nina global effect effects. environment Ozone depletion El-Nino and La Nina effects. Module VI: **Environment Impact** 3 Assessment: Unit – 1 EIA and assessment of To realize the Lecture and To make short application of Discussion notes on environmental hazards EIA Environment Unit -2Remote sensing. Impact Assessment Module VII: **Problems of** 5 conservation; causes of threat to environment-Human interference Unit – 1 Check the Lecture and To make short knowledge in Discussion notes on Unit -2Deforestation problems of Unit – 3 Habitat destruction

53 | Page

Unit – 4	Overexploitation of		Problems of conservation		conservation; causes of threat
	resources.		conservation		to environment.
Module VIII:	Identification of	5			
	threatened plants:				
Unit – 1	Red list categories-		To read the	Lecture and	To make short
	extinct, endangered,		importance of	Discussion	notes on
	vulnerable, rare and		Red list		threatened plants
	out of danger.		categories, Extinction		
Unit – 2	Extinction process.		process and hot		
Unit – 3	Hot spots		spots		
Unit – 4	Keystone species and flagship species.				
	magship species.				
Module IX:	Strategies for	6			
	conservation:				
Unit – 1	In situ and ex situ		To read the	Lecture and	To make short
	Conservation,		importance of	Discussion	notes on
Unit – 2	Biosphere reserve	_	strategies for conservation		strategies for conservation.
Unit – 3	National parks				
Unit – 4	Wildlife sanctuaries.				
Unit – 5	Gene banks				
Unit – 6	Cryopreservation				
Unit – 7	Seed banks				
Module X:	Afforestation-	5			
Unit – 1	social forestry and		To read the	Lecture and	To make short
	agroforestry		term and definition of	Discussion	notes on
Unit – 2	International	_	1BP, MAB,		afforestation and rules to protect
	biological		IUCN .		environment.
	programme (lBP),				
Unit – 3	Man and biosphere	1			
	programme (MAB)				
Unit – 4		-			
Unit – 5	IUCN	-			
OIIII - 3	world environment day				
Unit – 6		1			
	wildlife preservation act (1972)				
Unit – 7	Indian forest	1			
	(conservation) act				
	(1980) and United				
	Nations Environment				
	Programme				
Unit – 8	Environment	1			

PG Botany Protection Acts. 2 Module XI: Environmental awareness-Unit – 1 role of government To read the role Lecture and To make the list of NGOs in Discussion of NGOs in and NGOs. Environmental Environmental awareness and awareness Unit – 2 Gaia hypothesis note on Gaia hypothesis. Module XII: **Biodiversity-**3 To make short significance at Local, To read the Lecture and importance of Discussion notes on National and Global Biodiversity. Biodiversity levels. Deep ecology (Paradigm shift from anthropocentric ecology to ecocentric ecology) and national heritages.

UNITWISE BREAK UP: PHYTOGEOGRAPHY

LECTURE HOURS: 16

OBJECTIVE:

- a. To able to identify the phytogeographical distribution patterns of plants.
- b. To able to understand the endemism and importance of endemic plant protection

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Patterns of plant	3			
	distribution:				
Unit – 1	Introduction		Check the	Lecture and	To make short
Unit – 2	Continuous distribution: circumpolar, circumboreal, circum austral, pan tropical.		knowledge in Patterns of plant distribution	Discussion	notes on Continuous distribution of plants and its types
Module II:	Discontinuous distribution:	4			
Unit – 1	Theory of land bridges,		Check the knowledge of		To make short notes on

Unit – 2 Unit – 3	Theory of continental drift, Theory of glaciation.		theories related to discontinuous plant distribution.	Lecture, Discussion, and Illustration	discontinuous distribution	
Module III:	Endemic distribution:	3				
Unit – 1	Neoendemic, paleoendemic		To realize the importance of	Lecture and Discussion	To make short notes on	
Unit – 2	Age and area hypothesis.		Endemic plants and its conservations.		Endemism	
Module IV:	Phytochoria:	6				
Unit – 1 Unit – 2	World India.	_	To realize the importance of phytochoria of world and India	Lecture, Discussion, and Illustration	To make short notes on phytochoria of world and India	

UNITWISE BREAK UP: FOREST BOTANY

LECTURE HOURS: 16

OBJECTIVE:

- a. To enable students to recognize the different forest types and products, major and minor products for sustainable utilization of bio-resources.
- b. To create the awareness of Influence of forests on environment and Consequence of deforestation and industrialization

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment	
Module I:	Forest-	3				
Unit – 1 Unit – 2	Definitions Study of various types of forests in the world and in India.	-	Check the knowledge of various types of forests	Lecture and Discussion	To make short notes on various types of forests	
Module II:	Forest products-	10				
Unit – 1	Major with special reference to Kerala.		Check the knowledge of forest	Lecture and Discussion	To collect the major and minor products	
Unit – 2	Minor with special reference to Kerala.	-	products and its uses.			
Module III:	Influence of forests	3				

56 | Page

	on environment:			
Unit – 1	Consequence of deforestation and industrialization	Check the knowledge of influences	Lecture and Discussion	To make short notes on influences of
Unit – 2	sustainable utilization of bioresources	of forests on environment.		forests on environment

Teacher in Charge: Mrs. Sreelakshmi V. V.

BOT2C L03. PRACTICALS OF CELL BIOLOGY, MOLECULAR BIOLOGY, BIOPHYSICS, CYTOGENETICS,

(0.5 +1+ 0.5+1= 3 hours) Practical Hours per week: 3, Credits: 5

Internal: 20%, External: 80%, Examination: 3 Hours

OBJECTIVES:

- a. To familiarize students with various techniques and develop skill in practical session for laboratories.
- b. To develop knowledge about the preparation of buffers and use of pH merter.
- c. To familiarize students with Solve the Problems from molecular genetics
- *d. To acquire knowledge about the importance and significance of colchicine in chromosomal studies*

Cell Biology

Module I

Study of Mitosis in root tip cells.

Module II

Pre-treatment of root tips with colchicine /hydroxy quinoline paradichlorobenzene and study of chromosomes in Chlorophytum, / Zea mays/ Crotalaria/ Cyanotis.

Module III

Isolation of plastids and mitochondria.

Module IV

Chromosome banding

Molecular Biology

Module I

Working out problems from molecular genetics.

Module II

lsolation of nucleic acid and identification of histones by SDS-PAGE.

Module III

lsolation of plant DNA and its quantification by spectrophotometric/ calorimetric method.

Module IV

Immunological techniques: ELISA and Western BIot.

Biophysics

Module I

Preparation of buffers and measurement of pH using pH meter.

Module II

Determination of isoelectric pH.

Module III

Paper chromatography: Separation of sugars.

Module IV

Thin layer chromatography- separation of amino acid mixtures.

Module VI

Calorimetric and spectrophotometric elimination of proteins by Biuret / Lowry's method.

Module VII

Estimation of amino acid by ninhydrin method (colorimetric).

Cytogenetics

Module I

induction of polyploidy using colchicine; different methods of the application of colchicine

Module II

Effect of induced and spontaneous polyploidy on plant phenotype, meiosis, pollen and seed fertility and fruit set.

Module III

Preparation of karyotype and ideogram of plant meristematic cells

Module IV

Cytological studies in callus tissues

Module V

Study of meiosis in translocation heterozygotes (Rheo discolor)

Module VI

Study of polytene chromosomes.

> Preparation of lab record and submission for valuation.

> Visit to a reputed molecular biology lab and submission of a report.

BOT2C L03. PRACTICALS OF CELL BIOLOGY, MOLECULAR BIOLOGY, BIOPHYSICS, CYTOGENETICS,

(0.5 +1+ 0.5+1= 3 hours) Practical Hours per week: 3, Credits: 5

Internal: 20%, External: 80%, Examination: 3 Hours

OBJECTIVES:

- a. To familiarize students with various techniques and develop skill in practical session for laboratories.
- b. To develop knowledge about the preparation of buffers and use of pH merter.
- c. To familiarize students with Solve the Problems from molecular genetics
- *d. To acquire knowledge about the importance and significance of colchicine in chromosomal studies*

LESSON PLAN: CELL BIOLOGY

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
Module I: Study of Mitosis in root tip cells. [4 Hours]	Onion root preparation, Identifying characters in four stages of Mitosis	 Lecture Discussion Participative learning 	Peer group discussion on theory and preparation of onion root tip	To understand the chromosome orientation in different stages of Mitosis	Evaluation through the Practical test papers.
Module II Pre-treatment of root tips with colchicine /hydroxy quinoline paradichlorobenzene and study of chromosomes in Chlorophytum, / Zea mays/ Crotalaria/ Cyanotis [4 Hours]	Flower bud Preparation, Significance of Colchicine in Cell Division	 Lecture Discussion Participative learning 	Peer group discussion on theory and preparation of flower bud.	To understand the role of colchicine in cell division	Evaluation through the Practical test papers

LESSON PLAN: MOLECULAR BIOLOGY

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
Module I: Working out problems from molecular genetics [16 Hours]	DNA Structure, Replication, Transcription and Translation	 Lecture Discussion Problem solving Participative learning 	Peer group discussion on theory and Word Problems	To understand the various methods of calculations and application in Biology Science	Evaluation through the Practical test papers.

LESSON PLAN: BIOPHYSICS

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
Module I	Buffer systems and	• Lecture	Peer group discussion	To understand the procedure	Evaluation through the
Preparation of buffers and measurement of pH	Measurements of pH using pH Meter.	DiscussionExperiential	ith theory	of	practical test
using pH meter. [8 Hours]		learning	and Calculation of pH	measurement pH of solution using pH Meter.	paper.

LESSON PLAN: CYTOGENETICS

required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
-----------	--	---	----------	---------------------------------	------------

61 | Page

PG Botany					
Module I: induction of polyploidy using colchicine; different methods of the application of colchicine [4 Hours]	Polyploidy	 Lecture Discussion Experiential learning 	Illustration	To understand the role of colchicine in inducing polyploidy.	Evaluation through the practical test paper.
Module III Preparation of karyotype and ideogram of plant meristematic cells [6 Hours]	Karyotype and Idiogram	 Lecture Discussion Problem solving Participative learning 	Peer group discussion on theory and Problems.	To understand Karyotype and Idiogram	Evaluation through the practical test paper.
Module V Study of meiosis in translocation heterozygotes (<i>Rheo discolor</i>) [6 Hours]	Meiosis and Translocation heterozygotes in Rheo	 Lecture Discussion Experiential learning 	Peer group discussion on theory and Illustrations.	To understand Chromosome orientation in Rheo discolor in Meiosis.	Evaluation through the practical test paper.

COURSE OUTCOMES

The students who complete this course will be able to:

со	CO Statement
CO1	Develop skills for Preparation of root tip cells for mitotic studies.
CO2	Equipped with Preparation of buffers and measurement of pH using pH meter
CO3	Analyze the working out problems from molecular genetics.
CO4	Identify and analyze polytene chromosomes
CO5	Develop drawing skills good Idiogram from given data.

BOT2C L03. PRACTICALS OF CELL BIOLOGY, MOLECULAR BIOLOGY, BIOPHYSICS, CYTOGENETICS,

(0.5 +1+ 0.5+1= 3 hours) Practical Hours per week: 3, Credits: 5

Internal: 20%, External: 80%, Examination: 3 Hours

UNITWISE BREAK UP: CELL BIOLOGY

LECTURE HOURS: 8

OBJECTIVE:

- a) Develop skills for Preparation of root tip cells for mitotic studies.
- *b)* To acquire knowledge about the importance and significance of colchicine in chromosomal studies.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Study of Mitosis in root tip cells.		Check the knowledge of Mitosis	Lecture and Illustrations	Write notes on stages of Mitosis
Unit – 1	Onion root tip preparation and Identification of stages of Mitosis	4			
Module II	Pre-treatment of root tips with colchicine /hydroxy quinoline paradichlorobenzene and study of chromosomes in Chlorophytum, / Zea mays/ Crotalaria/ Cyanotis	4	Check the knowledge about Colchicine in cell division.	Lecture and Illustrations	Write notes on Significance of Colchicine in cell division.
Unit - 1	Colchicine treatment and Chromosome study				

UNITWISE BREAK UP: MOLECULAR BIOLOGY

LECTURE HOURS: 16

OBJECTIVE:

a. To familiarize students with Solve the Problems from Molecular Geneticsb. To acquire knowledge about Central dogma of molecular Biology

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I	Working out problems from molecular genetics	16	Check the knowledge in central dogma of	Lecture Problem solving	To Work out more related problems
Unit – 1	DNA Structure, Replication, Transcription and Translation		Biology		

ITWISE BREAK UP: BIOPHYSICS

LECTURE HOURS: 8

OBJECTIVE:

- a. To familiarize students with various techniques and develop skill in practical session for laboratories
- b. To enable the students about preparation of buffers and measurement of pH using pH meter

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Preparation of buffers and measurement of pH using pH meter.	8	Check Knowledge about buffer systems	Lecture Demonstration Problem Solving	To work out Problems relayed to buffer systems and Calculation of pH
Unit – 1	Buffer preparations, Measurement pH and Calculations				

UNITWISE BREAK UP: CYTOGENETICS

LECTURE HOURS: 16

OBJECTIVE:

- *a.* To familiarize students with various techniques and develop skill in practical session for laboratories.
- b. Develop skills for Preparation of root tip cells for mitotic studies.
- c. Develop drawing skills for Idiogram from given data.

Module Number	Торіс	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Inductionofpolyploidyusingcolchicine;differentmethodsoftheapplicationofcolchicine	4	Check knowledge about the role of colchicine in cell division	Lecture Discussion Illustrations	To find out different methods of the application of colchicine
Unit – 1	Onion root tips with Colchicine Treatments				
Module III	Preparation of karyotype and ideogram of plant meristematic cells	6	Check the knowledge in Karyotyping and idiogram	Lecture Discussion Solve problems	To find the importance of Karyotyping and Idiogram
Unit – 1	Karyotype and Idiogram				
Module V	Study of meiosis in translocation heterozygotes (Rheo discolor	6	Check the knowledge in Stages of Meiosis	Lecture Discussion Illustrations.	Write a note on Translocation heterozygotes
Unit – 1	Flower Bud Preparation for Meiosis and stage Identification				

Teacher in Charge: Mrs. Sweety M. S.

BOT2L04. GENETICS, BIOSTATISTICS, PLANT BREEDING, PLANT ECOLOGY, CONSERVATION BIOLOGY, PHYTOGEOGRAPHY AND FOREST BOTANY (0.5+0.5+0.5+0.5+0.5+0.5=3 hours)

Lecture Hours per week: 3, Credits: 2.5

Internal: 20%, External: 80%, Examination: 3 Hours

OBJECTIVES:

- a. To familiarize students with various techniques and develop skill in practical session for laboratories.
- b. To develop the skill in hybridization technique and help to produce new varieties.
- c. To familiarize students with Solve the Problems from Measures of dispersion, tests of significance and correlation analysis.

Genetics

Module I:

Problems from linkage, tetrad analysis, quantitative genetics and population genetics.

Biostatistics

Module I:

Problems from Mean, standard deviation, Coefficient of variation, tests of significance and correlation analysis.

Module II:

Use of computer programmes for statistical analysis.

Plant Breeding

Module I:

Study of floral morphology and flower structure in crop plants- rice, cashew, pulses, Solanum, Capsicum.

Module II:

Practice of hybridization technique in self- and cross-pollinated plants mentioned in (1).

Module III:

Biometrical techniques in Plant Breeding- analysis of variability.

Ecology and Conservation biology:

Module I:

Determination of food chains and food web in aquatic ecosystem.

Module II:

Determination of the minimum size of the quadrat suitable for an area using species

area curve method.

Module III:

Determination of the Importance Value Index (IVI) of plant species in the community by quadrat, line and belt transect methods.

Module IV:

Comparative study of polluted and non-polluted aquatic ecosystems.

Module V:

Visit to a meteorological station, national park or wild life sanctuary, sewage treatment unit and major construction site.

Module VI:

Estimation of dissolved oxygen content in the water sample by Winkler's method. **Module VII:**

Determination of primary production in water samples by light and dark bottle method (Winkler's method).

Module VIII:

Determination of dissolved carbon dioxide content in water samples.

Module IX:

Determination of frequency of plant species of an area and heterogeneity of vegetation using transect method.

Phytogeography

Module I:

Identification of the various floristic and vegetational regions of the world and India in maps.

Forest Botany

Module I:

Study of the major and minor forest products of Kerala and their uses.

- > Preparation and submission of lab record
- Visit to one plant breeding station and one ecologically sensitive area and submission of reports.

BOT2L04. GENETICS, BIOSTATISTICS, PLANT BREEDING, PLANT ECOLOGY, CONSERVATION BIOLOGY, PHYTOGEOGRAPHY AND FOREST BOTANY (0.5+0.5+0.5+0.5+0.5+0.5=3 hours)

Lecture Hours per week: 3, Credits: 2.5

Internal: 20%, External: 80%, Examination: 3 Hours

OBJECTIVES:

- *a.* To familiarize students with various techniques and develop skill in practical session for laboratories.
- b. To develop the skill in hybridization technique and help to produce new varieties.
- c. To familiarize students with Solve the Problems from Measures of dispersion, tests of significance and correlation analysis.

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
Module I: Problems of Genetics: [8 Hours]	Problems from linkage, tetrad analysis, quantitative genetics and population genetics.	 Lecture Discussion Problem solving Participative learning 	Peer group discussion on theory and calculation	To understand the Problems from linkage, tetrad analysis, quantitative genetics and population genetics.	Evaluation through the test papers.

LESSON PLAN: GENETICS

LESSON PLAN: BIOSTATISTICS

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
---------------------------------------	--	--	----------	---------------------------------	------------

PG Botany					
Module I: Problems of from Statistics [8 Hours]	Mean, standard deviation, Coefficient of variation, tests of significance and correlation analysis.	 Lecture Discussion Problem solving Participative learning 	Peer group discussion on theory and calculation	To understand the various methods of calculations and application in Biology Science	Evaluation through the test papers.
	<u>LESSON PLA</u>	N: PLANT BRE	<u>EDING</u>		
Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
Module I: Floral morphology of plants [3 Hours]	Study of floral morphology and flower structure in crop plants- rice, cashew, pulses, Solanum, Capsicum.	 Lecture Discussion Experiential learning 	Dissection and Illustration	To understand the floral morphology	Evaluation through the practical exam
Module II: Practice of hybridization technique [5 Hours]	Practice of hybridization technique in self- and cross-pollinated plants mentioned in (1).	 Lecture Discussion Experiential learning 	Dissection and Illustration	To understand the hybridization technique	Evaluation through the practical exam

LESSON PLAN: PLANT ECOLOGY AND CONSERVATION BIOLOGY

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning Outcome (Output)	Assessment
Module I: Aquatic ecosystem. [1 Hours]	Determination of food chains and food web in aquatic ecosystem.	 Lecture Discussion Experiential learning 	Illustration	To understand the	Evaluation through the practical exam
Module II: Species area curve method. [1 Hours]	Determination of the minimum size of the quadrat suitable for an area using species	 Lecture Discussion Experiential 	Peer group discussion on theory	To understand the minimum size of the quadrat	Evaluation through the practical exam

	area curve method.	learning	and calculation	suitable for an area using species area curve method.	
Module III: Importance Value Index (IVI). [1 Hours]	Determination of the Importance Value Index (IVI) of plant species in the community by quadrat, line and belt transect methods.	 Lecture Discussion Experiential learning 	Peer group discussion on theory and calculation Illustration	To understand the Importance of Value Index (IVI) of plant species in the community by quadrat	Evaluation through the practical exam
Module IV: Comparative study: [1 Hours]	Comparative study of polluted and non- polluted aquatic ecosystems.	 Lecture Discussion Experiential learning 	Peer group discussion on theory and calculation Lab sessions	To understand the Importance of Comparative study of polluted and non-polluted aquatic ecosystems.	Evaluation through the practical exam
Module VI: Estimation of dissolved oxygen content in the water sample: [1 Hours]	By Winkler's method.	 Lecture Discussion Lab sessions Experiential learning 	Peer group discussion on theory and calculation Lab sessions	To understand the Importance of estimation of dissolved oxygen content in water	Evaluation through the practical exam
Module VII: Determination of primary production in water samples: [1 Hours]	By light and dark bottle method (Winkler's method).	 Lecture Discussion Lab sessions Experiential learning 	Peer group discussion on theory and calculation Lab sessions	To understand the Importance of determination of primary production in water samples	Evaluation through the practical exam
Module VIII: Determination of dissolved carbon dioxide content in water samples: [1 Hours]	In water samples.	 Lecture Discussion Lab sessions Experiential learning 	Peer group discussion on theory and calculation Lab sessions	To understand the Importance of estimation of dissolved carbon dioxide content in water	Evaluation through the practical exam
Module IX: Transect method: [1 Hours]	Determination of frequency of plant species of an area and heterogeneity of	 Lecture Discussion Lab sessions Experiential 	Peer group discussion on theory	To understand the Importance Determination	Evaluation through the practical exam

	vegetation	learning	and calculation Lab sessions	of frequency of plant species in greenland ecosystem.	
Unit/session/hours (Time required)	LESSON PLA Topics for student preparation (Input)	AN: PHYTOGE(Procedure (Process) Student centric Method of teaching	DGRAPHY Activity	Learning Outcome (Output)	Assessment
Module I: Floristic and vegetational regions [4 Hours]	Identification of the various floristic and vegetational regions of the world and India in maps.	Lecture Discussion Participative learning	Illustration	To understand the various floristic and vegetational regions of the world and India in maps.	Evaluation through the drawing tests

		Method of teaching			
Module I: Forest products of Kerala [4 Hours]	Study of the major and minor forest products of Kerala and their uses.	 Lecture Discussion Participative learning Experiential learning 	Collection of Specimens Illustations	To understand the various major and minor forest products of Kerala and their uses.	Evaluation through the test papers.

COURSE OUTCOMES

The students who complete this course will be able to:

СО	CO Statement
CO1	Describe Plant Population Details.
CO2	Demonstrate hybridization technique in different crop plants.
CO3	Solve the Problems from Measures of dispersion, tests of significance and correlation analysis.
CO4	Develop skills for estimation of dissolved oxygen content in the water sample by Winkler's method
CO5	Develop skills for estimation of primary production in water samples by light and dark bottle method (Winkler's method).
CO6	Identify of the various floristic and vegetational regions of the world and India in maps
BOT2L04. GENETICS, BIOSTATISTICS, PLANT BREEDING, PLANT ECOLOGY, CONSERVATION BIOLOGY, PHYTOGEOGRAPHY AND FOREST BOTANY (0.5+0.5+0.5+0.5+0.5+0.5=3 hours)

Lecture Hours per week: 3, Credits: 2.5

Internal: 20%, External: 80%, Examination: 3 Hours

UNITWISE BREAK UP: GENETICS

PRACTICAL HOURS: 8

OBJECTIVE:

- a. To familiarize students with Genetics and its application
- *b.* To solve the problems related to linkage, tetrad analysis, quantitative genetics and population genetics.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Duchlana of	8	Check the	Lecture	To Work out
	Problems of		knowledge	Illustrations	more related
	Genetics:		in		problems
Unit – 1	Linkage		Genetics		
Unit – 2	Tetrad analysis,				
Unit – 3	Quantitative genetics				
Unit – 4	Population genetics.				

UNITWISE BREAK UP: BIOSTATISTICS

PRACTICAL HOURS: 8

OBJECTIVE:

a. To familiarize students with Solve the Problems from Measures of dispersion, tests of significance and correlation analysis.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Problems of from Statistics	8	Check the knowledge	Lecture Illustrations	

		in Central tendencies	Group discussions	To Work out more related
Unit – 1	Mean	and Measures of		problems
Unit – 2	standard deviation	dispersion. To read		
Unit – 3	Coefficient of variation	the formulas		
Unit – 4	tests of significance	of correlation		
Unit – 5	correlation analysis.	analysis.		

UNITWISE BREAK UP: PLANT BREEDING

PRACTICAL HOURS: 8

OBJECTIVE:

a. To develop the skill in hybridization technique and help to produce new varieties.

Module Number	Торіс	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Floral morphology of plants	3			
Unit – 1	Study of floral morphology and flower structure in crop plants- rice, cashew, pulses, Solanum, Capsicum.		Collect the Specimen	Demonstration and Lecture	Draw the diagrams and label the parts
Module II:	Practice of hybridization technique	5			
Unit – 1	Practice of hybridization technique in self- and cross-pollinated plants mentioned in (1).		Collect the Specimen	Demonstration and Lecture	Draw the diagrams and label the parts

UNITWISE BREAK UP: PLANT ECOLOGY AND CONSERVATION BIOLOGY

LECTURE HOURS: 8

OBJECTIVE:

- *a.* To familiarize students with various techniques and develop skill in practical session for laboratories.
- b. To familiarize Winkler's method and its applications in various fields.
- c. To familiarize IVI and its applications in environment related studies.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Aquatic ecosystem.	1			
Unit – 1	Determination of food chains and food web in aquatic ecosystem.		To read about food chains and food web in aquatic ecosystem.	Lecture Illustrations Group discussions	To find the more examples of food chains and food web in aquatic ecosystem.
Module II:	Species area curve method.	1			
Unit – 1	Determination of the minimum size of the quadrat suitable for an area using species area curve method.		To check the knowledge in species area curve method	Demonstration and Lecture	To draw the species area curve method based on provided data
Module III:	Importance Value Index (IVI).	1			
Unit – 1	Determination of the Importance Value Index (IVI) of plant species in the community by quadrat, line and belt transect		To check the knowledge in lVl and its important features.	Demonstration and Lecture	To draw the graph based on collected data and calculated values.
Module IV:	Comparative study	1			
Unit – 1 Comparative study of polluted and non- polluted aquatic ecosystems.			To read about the effect of pollution in	Demonstration and Lecture	To write the comment on effect of pollution in aquatic

			-		
			aquatic ecosystems.		ecosystems based on compared value.
Module VI	Estimation of dissolved oxygen content in the water sample	1			
Unit – 1	Winkler's method.		To check the knowledge in dissolved oxygen content	Demonstration and Lecture	To repeat the procedure with different samples collected from different areas.
Module VII:	Determination of primary production in water samples:	1			
Unit – 1	By light and dark bottle method (Winkler's method).		To check the knowledge in Winkler's method	Demonstration and Lecture	To repeat the procedure with different samples collected from different areas
Module VIII:	Determination of dissolved carbon dioxide content in water samples:	1			
Unit – 1	In water samples		To check the knowledge in dissolved carbon dioxide content in water samples	Demonstration and Lecture	To repeat the procedure with different samples collected from different areas
Module IX:	Transect method:	1			
Unit – 1	Determination of frequency of plant species of an area and heterogeneity of vegetation		To check the knowledge in heterogeneity of vegetation	Demonstration and Lecture	To collect the samples from different sites and mention the importance of heterogeneity of vegetation

UNITWISE BREAK UP: PHYTOGEOGRAPHY

PRACTICAL HOURS: 4

OBJECTIVE:

a. To familiarize students with the various floristic and vegetational regions of the world and India in maps.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Floristic and vegetational regions	4	To check the knowledge in Identification	Lecture Illustrations Group discussions	To draw the maps of India and World and label various
Unit – 1	Identification of the various floristic and vegetational regions of the world and India in maps		of the various floristic and vegetational regions of the world and India in maps		floristic and vegetational regions.

UNITWISE BREAK UP: FOREST BOTANY

PRACTICAL HOURS: 4

OBJECTIVE:

a. To familiarize students with the major and minor forest products of Kerala and their uses.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Forest products of Kerala	4	To read the Scientific	Lecture Demonstration Illustrations	Draw the major and minor forest products of
Unit – 1	Study of the major and minor forest products of Kerala and their uses.		names, Family and Uses of major and minor forest products of Kerala.	Group discussions	Kerala and write the scientific names, Family and Uses.

Teacher in Charge: Mrs. Sreelakshmi V. V.

FOURTH SEMESTER PG DEPARTMENT OF BOTANY

M. Sc. BOTANY COURCE PLAN 2020-2021

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA M. Sc. Programme in Botany (CBCSS) (from 2020 admissions onwards) Programme, structure of courses and distribution of credits

FOURTH SEMESTER

Sl. No.	Course	Title	Contact Hours	Credits	Internal	External	Total Credits
1.	Elective	BOT4E01: Elective I	6	5	20%	80%	5
2.	Elective	BOT4E02: Elective II	6	5	20%	80%	5
3.	Practicals of Electives	BOT4L07 : Practicals of Electives	6	2	20%	80%	2
4.	Dissertation	BOT4D01: Dissertation	6	5	20%	80%	5
5.	Viva voce	BOT4V01: Viva voce		3	20%	80%	3
6.	Seminar		1	-	-	-	-
	Total		25	-			5

ELECTIVE: 1

BOT4E01: ENVIRONMENTAL BIOLOGY AND BIODIVERSITY CONSERVATION Lecture Hours per week: 6, Credits: 5 Internal: 20%, External: 80%, Examination 3 Hours

OBJECTIVES:

To understand about the need of conservation, Laws, organizations actively involved in conservation, global climate changes and its impacts and population studies

Module I:

Population ecology: Properties (concepts of rate, intrinsic rate of natural increase, carrying capacity, population fluctuations and cyclic oscillations, density independent and density dependent mechanisms of population regulation, patterns of dispersion, Allee principle of aggregation and refuging, home range and territoriality, energy partitioning and optimization, *r* and Kselection.

Module II:

Community ecology: Types of interaction between two species, coevolution, evolution of cooperation, group selection, interspecific competition and coexistence, positive and negative interactions, concepts of habitat, ecological niche and guild.

Module III

Human population: Expansion and its causes, rich and poor nations, consequences, dynamics, Cairo conference 1994.

Module IV:

Major global environmental challenges: Acid rain, Ozone depletion, climate disruption, deforestation, land degradation and desertification, freshwater degradation and shortage, marine fisheries decline, loss of biological diversity and excessnitrogen.

Module V:

Global initiatives: Stockholm conference (1972), Rio (1992), Ramsar convention (1971), Kyoto (1997), Johannesburg (2002), Stockholm (2011).

Module VI:

(6 hours)

(6 hours)

Environmental Law- International and National: The Environment Protection Act & Rules 1986; Water (Prevention & Control of Pollution) Act 1974; Biodiversity Act(2002).

80 | Page

(8 hours)

(8 hours)

(5 hours)

(5 hours)

.

Module VII:

Thoughts on ecology: Contributions of Buddha, RabindranathaTagore, Mahatma Gandhi, Rachel Carson, GroHerlemBrundtland, VandanaSiva, Edward O Wilson, AldoLeopald.

Module VIII:

Biodiversity: a). Genetic diversity, agrobiodiversity and cultivated taxa, causes of decline, value of wild species, conservation practices- traditional (*upavanavinoda*, sacred groves, *sthalavrikshas*) and modern (*in situ* and *ex situ*). b). Biodiversity information management and communication-libraries, databases (taxonomic database working groups for plant sciences, data bases on biodiversity); distribution of biodiversity information, metadatabases, virtual libraries.

Module IX:

Ecosystem capital- use and restoration: Global perspective on biological systems; conservation, preservation and restoration. Biomes and ecosystems under pressure (forest biomes, ocean ecosystems).

Module X:

Habitat studies: Wetlands (Ramsar sites), mangroves and forest types of Kerala.

Module XI:

Brief study of the following: Cybernetics, ecological foot print, sustainable development, deep ecology, Gaia hypothesis, conservation ethics, peoples' movements for biodiversity conservation, role of NGOs and educational institutions in biodiversity conservation, trade related IPR, ecotourism.

Module XII:

Climate change and its impacts- brief study.

Module XIII:

Disaster management- basic aspects.

References

Champion H.G. and Seth S.K. A Revised Classification of Forest Types of India. Govt. of India, New Delhi. GadgilMadhav. Ecological Journeys. Permanent Black, Delhi. Jaiswal P.C. Soil Plant and Water Analysis. Kalyani Publishers, Ludhiana.

(6 Hours)

(5 Hours)

(5 Hours)

(7 hours)

(5 hours)

(10 hours)

(4 hours)

Krishnamurthy K.V. An Advanced Text Book on Biodiversity Principles and
Practice. Oxford IBH. Misra R. Ecology Workbook. Oxford IBH.
Odum E.P. and Barrett G.W. Fundamentals of Ecology. Thomson
Books, Bangalore. Palmer J.A. Fifty Thinkers on the Environment.
Routledge, London.
Puri G.S. Indian Forest Ecology. Oxford IBH.
Pushpangadan P. and Nair K.S.S. Biodiversity and Tropical Forests- The Kerala Scenario. STEC,
Thiruvananthapuram.
Sarngdharacharyar. (Translated by Vishnu B.). *Vrukshaayurvedam*JanapriyaPusthakasala,
Kottayam.
Sivadasan M. and Mohanan K.V. Biodiversity and Ecology: Concepts and Facts. Department of
Botany, University of Calicut, Kerala.
SpethGustave James and Haas M. Peter. Global Environmental Governance. Pearson Longman,
New Delhi.

ELECTIVE: 1

BOT4E01: ENVIRONMENTAL BIOLOGY AND BIODIVERSITY CONSERVATION Lecture Hours per week: 6, Credits: 5 Internal: 20%, External: 80%, Examination 3 Hours

OBJECTIVES:

To understand about the need of conservation, Laws, organizations actively involved in conservation, global climate changes and its impacts and population studies

LESSON PLAN- ENVIRONMENTAL BIOLOGY AND BIODIVERSITY CONSERVATION

Unit/session/hou rs (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning outcome (out put)	Assessment
Module I:	Properties (concepts of rate, intrinsic rate of natural increase,	Lecture Participativ	Discussion	To understand about properties and mechanisms	Evaluation through
Population ecology	carrying capacity, population	e learning		with in a population	Q&A
(8 Hours)	fluctuations and cyclic oscillations, density independent and density dependent mechanisms of population regulation, patterns of dispersion, Allee principle of aggregation and refuging, home range and territoriality, energy partitioning and optimization, r and Kselection.				

PG Botany					
Module II: Community ecology: (8 hours)	Types of interaction between two species, coevolution, evolution of cooperation, group selection, interspecific competition and coexistence, positive and negative interactions, concepts of habitat, ecological niche andguild	Lecture Participativ e learning	Discussion	To understand about community ecology and interactions between two species	Evaluation through test paper
Module III Human population (5 hour)	Expansion and its causes, rich and poor nations, consequences, dynamics, Cairo conference 1994.	Lecture Participativ e learning	Discussion	To understand about the human population expansion consequences, and preventive measures	Evaluation through test paper
Module IV: Major global environmental challenges (5 hours)	:Acid rain, Ozone depletion, climate disruption, deforestation, land degradation and desertification, freshwater degradation and shortage, marine fisheries decline, loss of biological diversity and excessnitrogen.	Lecture Participativ e learning	Discussion	To understand about the environmental challenges	Evaluation through test papers

PG Botany					
Module V: Global initiatives (6 hour)	Stockholm conference (1972), Rio (1992), Ramsar convention (1971), Kyoto (199 7), Johannesburg (2002), Stockholm(2011).	Lecture Participativ e learning	Discussion	To understand the significance of global initiatives in biodiversity conservation	Evaluation through test papers
	:				
Module VI: Environmental Law- International and National (5 hours)	The Environment Protection Act & Rules 1986; Water (Prevention & Control of Pollution) Act 1974; Biodiversity Act(2002).	Lecture Participativ e learning	Discussion	To understand the Laws of conservation of environment	Evaluation through Q&A
Module VII: Thoughts on ecology: (7 Hours)	Contributions of Buddha, RabindranathaTagor e, Mahatma Gandhi, Rachel Carson, GroHerlemBrundtla nd, VandanaSiva, Edward O Wilson,	Lecture Participativ e learning	Discussion	To understand thoughts of ecologyby eminent persons	Evaluation through test papers
Module VIII: Biodiversity: (10 hours)	AldoLeopald. a). Genetic diversity, agrobiodiversity and cultivated taxa, causes of decline, value of wild species,	Lecture Participativ e learning	Discussion	To understand the traditional and modern concepts of conservation of biodiversity	Evaluation through Q&A

Module IX Ecosystem capital- use and restoration: (4 Hours)	conservation practices- traditional (upavanavinoda, sacred groves, sthalavrikshas and modern (in situ and ex situ). b). Biodiversity information – management and communication libraries,databases (taxonomic database working groups for plant sciences, data bases on biodiversity) distribution of biodiversity information, metadatabases, virtual libraries Global perspective on biological systems; conservation, preservation and restoration. Biomes and ecosystems under pressure (forest biomes, oceanecosystems).	Lecture Participativ e learning	Discussion	To understand the ecosystem capital significance of conservation	Evaluation through Q&A
Module X:	Wetlands (Ramsar sites), mangroves	Lecture Participativ	Discussion	To understand the structure and	Evaluation through test
Habitat	and forest types of	e learning		ecology of	papers
studies	Kerala			different ecosystems	
(5 Hours)					
Module XI:	Cybernetics,	Lecture	Discussion	To familiarize the	Evaluation
Brief study of	ecological foot print, sustainable	Participativ e learning		terms cybernetics, deep	through test
the following:	development, deep	e learning		ecology, Gaia	papers
(6 Hours)	ecology, Gaia hypothesis, conservation ethics,			hypothesis and study the role of NGO s in	
	peoples' movements for biodiversity conservation, role of			biodiversity conservation	

Module XII: Climate change and its impacts- (5 Hours)	NGOs and educational institutions in biodiversity conservation, trade related IPR,ecotourism. Brief study.	Lecture Participativ e learning	Discussion	To understand the consequences and preventive measures of climate change	Evaluation through test papers
Module XIII: Disaster management (5 Hours)	basic aspects	Lecture Participativ e learning	Discussion	To study the basic aspects of disaster management	Evaluation through Q&A

COURSE OUTCOME

The students who complete this course will be able to:

со	CO Statement
CO2	Explain about global and regional initiatives for Climate change and Environmental Protection.
CO3	Analyze ecofriendly culture and to familiarize them with environmental ethics.
CO4	Describe the impact of climate change on ecosystem and role of people movements for biodiversity conservation
CO5	Aware different biodiversity information resources, meta-databases and virtual libraries.
CO6	Analyze biodiversity in terms of wild and agro biodiversity and its traditional conservation practices.
CO7	Identify and define about different types of habitats with reference to Kerala and India.
CO8	Apply the principles of conservation strategies in global perspective for the use and restoration of threatened ecosystem and sustainable development.

UNIT WISE BREAK UP: ENVIRONMENTAL BIOLOGY AND BIODIVERSITY CONSERVATION

Lecture hours: 80 hours

OBJECTIVES:

To understand about the need of conservation, Laws, organizations actively involved in conservation, global climate changes and its impacts and population studies

Module Number	Торіс	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Population ecology	(8 Hours)	To learn about population characteristics	Lecture and discussion	To make short note on Population ecology
Unit – 1	Properties, concepts of rate, intrinsic rate of natural increase, carrying capacity,				
Unit – 2	population fluctuations and cyclic oscillations.	-			
Unit – 3	density independent and density dependent mechanisms of population regulation, patterns of dispersion				
Unit-4	Allee principle of aggregation and refuging, home range and territoriality				
Module II	Community ecology	(8 hours)	To check the knowledge of community ecology	Lecture and discussion	To make short note on Population ecology
Unit-1	Types of interaction between two species, coevolution,				
Unit-2	evolution of cooperation, group selection,				

Module V:	Global initiatives	(6 hours)	To learn about global initiatives	Lecture and discussion	To write a note on global initiatives
Unit-3	and shortage marine fisheries decline, loss of biological diversity and excessnitrogen				
Unit-2	deforestation, land degradation and desertification, freshwater degradation and shortage				
Unit-1	Acid rain, Ozone depletion, climate disruption				enanenges
Module IV:	Major global environmental challenges	(5 hours)	To check the knowledge of environmental challenges	Lecture and discussion	Write an assignment on Major global environmental challenges
Unit-3	Cairo conference 1994				
Unit-2	rich and poor nations, consequences, dynamics,				
	causes Cairo conference 1994	_			
Module III Unit-1	Human population Expansion and its	(5 hours)	To learn about human population	Lecture and discussion	Write a short note on human population
Unit-4	concepts of habitat, ecological niche andguild			-	
Unit-3	interspecific competition and coexistence, positive and negative interactions,				

Unit-1		Τ	1	1	
· · · · ·	Stockholm conference (1972), Rio (1992),				
Unit-2	Ramsar convention (1971), Kyoto (1997)	-			
Unit-3	Johannesburg (2002), Stockholm(2011).	-			
Module	Environmental Law-	-	To check the	Lecture	To write a no
VI:	International and National	(5 hours)	knowledge of environmental laws	and discussion	on environmenta laws
Unit-1	The Environment	-			
	Protection Act & Rules				
	1986;				
Unit-2	Water (Prevention & Control of Pollution) Act 1974;	-			
Unit-3	Biodiversity Act(2002).	-			
Module	Thoughts on ecology:	(7 Hours)	To read about	Lecture	To write a no
VII:		(,	the views of eminent personalities	and discussion	on thoughts o Mahatma Gandhi
Unit-1	Contributions of	-			
	Buddha,				
	RabindranathaTagore				
Unit-2	Mahatma Gandhi,	-			
	Rachel Carson,				
Unit-3	Edward O Wilson,	-			
	AldoLeopald				
Unit-4	GroHerlemBrundtland,	1			
	VandanaSiva				

Module	Biodiversity		To learn about	Lecture	To Write a
VIII		(10	conservation	and discussion	short note on
		-	practices	discussion	conservation
		hours)			practices
Unit-1	a). Genetic diversity,				
	agrobiodiversity and cultivated taxa,				
Unit-2	causes of decline, value of				
01111-2	wild species,				
	-				
Unit-3	conservation practices-				
	traditional				
	(<i>upavanavinoda</i> , sacred groves, <i>sthalavrikshas</i>				
Unit-4	and modern (<i>in situ</i> and <i>ex</i>				
	situ				
Unit-5	Biodiversity information –management and				
	communication libraries,				
Unit-6	databases (taxonomic				
	database working groups				
	for plant sciences, data				
	bases on biodiversity)				
	distribution of biodiversity information				
Unit-7	metadatabases, virtual				
	libraries				
Module	Ecosystem capital- use		To learn about	Lecture	TO write a
IX	and restoration	(5 hours)	ecosystem capital	and discussion	short note or
			Capital	discussion	ecosystem
Unit-1	Global perspective on				capital
	biological systems				
	conservation, preservation				
T T 1 / A	and restoration.				
Unit-2	Biomes and ecosystems				
	under pressure (forest biomes, ocean ecosystems				
Module	Habitat studies		To learn about	Lecture	Write an
		(5 Hours)	different	and	assignment of
X:		(3 110015)	habitats	discussion	wetlands,
					mangroves an
Unit-1					forest types o
	Wetlands (Ramsar sites),				kerala

Unit-2	mangroves				
Unit-3	forest types of Kerala				
Module XI:	Brief study of the following	(6 Hours)	To read about cybernetics	Lecture and discussion	Write an assignment of cybernetics,II Ecotourism
Unit-1	Cybernetics, ecological foot print, sustainable development				NGOs, ecological fo print
Unit-2	deep ecology, Gaia hypothesis, conservation ethics				
Unit-3	peoples' movements for biodiversity conservation,				
Unit-4	role of NGOs and educational institutions in biodiversity conservation,.				
Unit-5	trade related IPR,ecotourism				
Module XII:	Climate change and its impacts	(5 Hours)	To read about climate change	Lecture and	To write an assignment of
				discussion	climate chan, and its impac
Unit-1	brief study on Climate change and its impacts				
Module XIII:	Disaster management	(5 Hours)	To read about disasters	Lecture and discussion	To write an assignment o disaster
Unit-1	basic aspects of disaster management				managemen

Teacher in Charge: Mrs. Sabeena A. M.

ELECTIVE: II

BOT4E01: GENETIC ENGINEERING Lecture Hours per week: 6, Credits: 5 Internal: 20%, External: 80%, Examination: 3 Hours

OBJECTIVES:

a) To familiarize student with the general procedure of gene cloning. b) To develop knowledge among students about various techniques employed in the creation of transgenic crops and the ethical issues involved. *c*)*To familiarize student with gene therapy strategies and its application in medical field.*

Module I:

Structure of genes in prokaryotes and eukaryotes. Genetic code and codons. Gene expression.

Module II:

Recombinant DNA technology: Tools of rDNA technology, methods of creating rDNA molecules, restriction mapping, isolation and separation of genetic material, southern, northern, western, southwestern and northwestern blotting techniques. Gene transfer techniques in plants-Agrobacterium mediated transfer, gene gun method, electroporation, microinjection, chemical methods.

Module III:

Modulo IV.

Molecular markers- RAMPO, SSCP, RFLP, RAPD, AFLP, EST markers, Repetitive DNA, Microsatellite and Minisatellite.

Wiouule 1 V.	
DNA sequencing- chemical and enzymatic methods. Importance of DNA sequencir	ıg.
Module V:	[7 Hours]
Gel electrophoresis- techniques for visualization and reading sequences.	
Module VI:	[6 Hours]
Polymerase Chain Reaction- history, methodology of PCR. Variations from Basic F	PCR- reverse
transcriptase PCR, nested PCR, inverse PCR- applications of PCR.	
Module VII:	[4 Hours]
DNA profiling- history, methodology of genetic fingerprinting- applications.	
Module VIII:	[10 Hours]
Genetic engineering for crop improvement – transgenic plants.	
Module IX:	[3 Hours]
Cloning of genes and production of vaccines drugs growth hormones and chemic	als

Cloning of genes and production of vaccines, drugs, growth hormones and chemicals.

Module X:

93 | Page

[10 Hours]

[8 Hours]

[12 Hours]

[4 Hours]

Gene therapy- types of gene therapy. Getting transgenes in to patients- viral and non-viral approaches. Success of gene therapy.

Module XI:

Abatement of pollution through genetically engineered microorganisms- an emerging approach towards environmental clean-up programmes.

Module XII:

Nanotechnology and its applications in genetic engineering.

References

- Hartl D.L. and Jones E.W. Genetics- Analysis of genes and genome. Jones and Bartlett Publishers. Nicholl Desmond S.T. An Introduction to Genetic Engineering. Cambridge Pub.
- Brown T.A. Gene Cloning and and DNA Analysis.
 Blackwell Science Pub. Dubey R.C. A Text Book of Biotechnology. Chand Pub.
- 3. Singh B.D. Biotechnology. Kalyani Publishers.
- Walker and Rapley. Molecular Biology and Biotechnology. Panima Pub. Chrispeels M.J. and Sadava D.E. Plants, Genes and Agriculture.
- 5. Lewin B. Genes. Oxford University Press.
- 6. Mason A.C. Principles of Gene Manipulation and Genomics.
- Rissler J. and Mellon M. The Ecological Risks of Engineered Crops. MIT Press, Cambridge. Avice, John C. The Hope, Hype and Reality of Genetic Engineering.
- McYYan R.P. Genetics and Genetic Engineering. Saras Publications. Narayana L.M. Molecular Biology and Genetic Engineering.
- Khadpekar N.R. The Age of Nanotechnology. ICFAI University Press, Hyderabad. Nalwa H.R. Encyclopedia of Nanoscience and Technology.

[4 hours]

ELECTIVE: II

BOT4E01: GENETIC ENGINEERING Lecture Hours per week: 6, Credits: 5 Internal: 20%, External: 80%, Examination: 3 Hours

OBJECTIVES:

a) To familiarize student with the general procedure of gene cloning.

b) To develop knowledge among students about various techniques employed in the creation

of transgenic crops and the ethical issues involved.

c)To familiarize student with gene therapy strategies and its application in medical field.

Unit/ session/ hours (time Required	Topics for student preparation (input)	Procedure (process) Student centric Method of teaching	Activity	Learning outcome (output	Assessme nt
Module I Structure of genes in prokaryotes and eukaryotes [8 Hours]	Genetic code and codons. Gene expression.	 Lecture Discussion Experiment al learning 	Group discussions	To understand Structure of genes in prokaryotes and eukaryotes	Evaluatio n through test paper
Module II Recombinant DNA technology [12 Hours]	Tools and methods of rDNA technology, Restriction mapping, Isolation and separation of genetic material, Blotting techniques- southern, northern, western, southwestern and northwestern. Gene transfer techniques in plants-	 Lecture Discussion Experiment al learning Participativ e learning 	Group discussions. Lab sessions (Isolation and separation of genetic material from onion)	To understand the significance of recombinant DNA technology	Evaluatio n through test paper
Module III Molecular markers [10 Hours]	RAMPO, SSCP, RFLP, RAPD, AFLP, EST markers, Repetitive DNA, Microsatellite and Minisatellite.	 Lecture Discussion Participativ e learning 	Group discussions	To understand the role of different molecular markers	Evaluatio n through test paper

LESSON PLAN: GENETIC ENGINEERING

PG Botany					
Module IV DNA sequencing [8 Hours]	Chemical and enzymatic methods. Importance of DNA sequencing	 Lecture Discussion Participativ e learning 	Group discussions	To understand the significance DNA sequencing	Evaluatio n through test paper
Module V Gel electrophoresis [7 Hours]	Techniques for visualization and reading sequences.	 Lecture Discussion Participativ e learning Experiment al learning 	Group discussions Lab sessions (Gel preparations)	To understand application of Gel electrophores is	Evaluatio n through test paper
Module VI Polymerase Chain Reaction. [6 Hours]	History and methodology of PCR. Reverse transcriptase PCR, nested PCR, inverse PCR and applications	 Lecture Discussion Participativ e learning 	Group discussions	To understand application of various types of PCR	Evaluatio n through test paper
Module VII DNA profiling [4 Hours]	History, Methodology and applications.	 Lecture Discussion Participativ e learning 	Group discussions	To understand the Methodology and applications.	Evaluatio n through test paper
Module VIII: Genetic engineering for crop improvement [10 Hours]	Transgenic plants.	 Lecture Discussion Participativ e learning 	Group discussions	To understand the Importance of GMOs.	Evaluatio n through test paper
Module IX: Cloning of genes and production of vaccines, drugs, growth hormones and chemicals [3 hours]	Vaccines, drugs, growth hormones and chemicals	 Lecture Discussion Participativ e learning 	Group discussions	To understand Applications of gene cloning in different fields.	Evaluatio n through test paper
Module X: Gene therapy. [4 hours] 96 Page	Types, of gene therapy, viral and non-viral approaches and Success of gene therapy Getting transgenes in to patients-	 Lecture Discussion Participativ e learning 	Group discussions	To understand the significance and importance of gene therapy	Evaluatio n through test paper

96 | P a g e

		-		in Medical field.	
Module XI: Abatement of pollution through genetically engineered microorganis ms. [4 hours]	Definitions – Classifications- Superbugs, Bioremediation- an emerging approach towards environmental clean-up programmes using genetically engineered microorganisms.	 Lecture Discussion Participativ e learning 	Group discussions	To understand the significance and importance of Bioremediati on and and use of Genetically Modified Organisms in Environment cleanup programmes	Evaluatio n through test paper
Module XII: Nanotechnolog y [4 hours]	Definition- Classification- Applications	 Lecture Discussion Participative learning 	Group discussions	To understand the significance and importance of Nanotechnolo gy	Evaluatio n through test paper

COURSE OUTCOME

	CO Statement
CO	
CO1	Outline the general procedure of gene cloning and Prospects, achievements and demerits of Transgenic Organisms.
CO2	Aware of gene therapy strategies and its application in medical field.
CO3	Evaluate the basic concepts of genome organization in plants.
	and about different molecular markers and its application
CO4	Evaluate the merits and demerits of different tools used in Recombinant DNA technology
CO5	Describe the importance of bio-nanotechnology in medicine and bioremediation and its biosafety concerns.

97 | Page

UNITWISE BREAK UP: GENETIC ENGINEERING

LECTURE HOURS: 80

OBJECTIVE:

a) To familiarize student with the general procedure of gene cloning.

b) To develop knowledge among students about various techniques employed in the creation of transgenic crops and the ethical issues involved.

c)To familiarize student with gene therapy strategies and its application in medical field.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Structure of genes in prokaryotes and eukaryotes	8	Check the knowledge in Genetic code	Lecture and Discussion Illustration	To make short notes on Characteristics
Unit – 1	Genetic code and codons.		and codons		of Genetic code and codons.
Unit – 2	Gene expression				
Module II:	Recombinant DNA technology	12	To read on the Concepts of rDNA	Lecture and Discussion Illustration	To make notes on restriction mapping and
Unit – 1	Tools and methods of rDNA technology		technology		blotting technique.
Unit – 2	Restriction mapping				
Unit – 3	Isolation and separation of genetic material				
Unit – 4	Blotting techniques -southern, northern, western, southwestern and northwestern.				
Unit – 5	Gene transfer techniques in plants				
Module III:	Molecular markers	10	To learn the steps in RFLP and RAPD	Lecture and Discussion	To prepare the notes on molecular
Unit – 1	RAMPO, SSCP, RFLP, RAPD, AFLP, EST markers				markers.

PG Botany Unit -2Repetitive DNA-Microsatellite and Minisatellite Module IV: To read the To Write about **DNA** sequencing 8 Lecture and Concepts and Illustration chemical and Unit – 1 Chemical and Importance of enzymatic Discussion enzymatic DNA methods of methods. sequencing sequencing. Importance of **DNA** sequencing Module V: Gel 7 To learn the To prepare Lecture and detailed notes electrophoresis steps in Gel Illustration on techniques electrophoresis Discussion Unit -1Techniques for visualization for visualization and and reading reading sequences sequences Module VI Polymerase 6 To read the To make short Lecture and Chain Reaction steps in PCR note various Illustration and its types of PCR Discussion Unit – 1 History and applications. methodology of PCR Unit -2Reverse transcriptase PCR, nested PCR, inverse PCR and applications Module VII 4 **DNA** profiling Check the To make short Lecture and knowledge in Illustration notes on Unit – 1 History, DNA profiling Methodology Discussion Methodology and and its and applications applications applications. **Module VIII** Genetic 10 Check the To make short Lecture and notes on GMOs engineering for knowledge in Illustration crop improvement **GMOs** Discussion Unit -1Transgenic plants. Module IX: Cloning of genes To learn about To make short Lecture and and production of 3 gene cloning Discussion note on vaccines, drugs, applications of growth hormones about gene and chemicals cloning Unit – 1 vaccines, drugs, growth hormones and chemicals Module X: To make short Gene therapy To learn about Lecture and 4 gene therapy Discussion note on applications of

PG Botany					
Unit – 1	Types, viral and non-viral approaches and Success of gene therapy Getting transgenes in to patients				about gene therapy
Module XI:	Abatement of pollution through genetically engineered microorganisms	4	To learn about pollution and its causes and Bioremediation	Lecture and Discussion	To make short note on significance of GMOs in environment
Unit – 1	Pollution abatement and superbugs				cleanup programes
Unit – 2	Bioremediation				
Unit – 2	Xenobiotic compounds and significance of Genetically modified organism in pollution abatement.				
Module XII:	Nanotechnology	4	To learn about nanoparticles	Lecture and Discussion	To make short note on
Unit – 1	Definition- Classification and Applications			D1500551011	Nanotechnology and its application in human life.

Teacher in Charge: Mrs. Sreelakshmi V. V.

PRACTICALS OF ELECTIVES

BOT4L07- PRACTICALS OF ENVIRONMENTAL BIOLOGY & BIODIVERSITY CONSERVATION AND GENETIC ENGINEERING

Lecture Hours per week:(3 + 3 = 6 hours), Credits: 5

Internal: 20%, External: 80%, Examination: 6 Hours

PRACTICALS OF ENVIRONMENTAL BIOLOGY & BIODIVERSITY CONSERVATION

1. Studies on the following and submission of reports: Waste water treatment plant, local environmental peculiarities (such as hillocks and forest patches), wet land ecosystem, alien invasive plants, degraded ecosystem, different forest types, effluent treatment system).

2. Physical and chemical analysis of soil and water: Particle size analysis of soil, estimation of particle density using relative density or volumetric flask; Air capacity analysis of soil by field method; Soil pH analysis of soil using pH meter. Water analysis for pH using pH meter, estimation of BOD by Winkler's method (dark and light bottles).

3. Study of community structure: Charting and mapping of vegetation, Raunkiaer's life forms, biological spectrum, profile diagram (soil).

4. Study of ecological succession: Different types of ecological successions.

5. Visit to an ecological sensitive area and submission of a report.

COURSE OUTCOME

The students who complete this course will be able to:

со	CO Statement
CO1	Develop Skills on determination of Physical and chemical analysis of soil and water.
CO2	Understand different forest Types and Ecosystems.
CO3	Familiarize with invasive plants and degraded ecosystems.
CO4	Understand the estimation of BOD
CO5	Understand charting and mapping of Vegetation.

101 | Page

PRACTICALS OF GENETIC ENGINEERING

- 1. Working out problems in genetic engineering.
- 2. Isolation of plant DNA and its quantification by spectrophotometer.
- 3. Isolation of plasmid DNA from E.coli.
- 4. Gel electrophoresis- gel preparation, casting, elution and staining.
- 5. Visualization of DNA by agarose gel electrophoresis and gel reading.
- 6. Construction of coding sequence of DNA using amino acid sequence.
- 7. Visit to a genetic engineering lab and submission of a report.

COURSE OUTCOME

The students who complete this course will be able to:

СО	CO Statement
CO1	Develop skills on DNA Isolation and Gel casting.
CO2	Understand the problem-solving methods in to Restriction Mapping.
CO3	Solve problems related to central dogma of Biology.
CO4	Understand the tools and Equipment's used in Recombinant DNA Technology.
CO5	Understand about dyes used in visualization of DNA.

LESSON PLAN- PRACTICALS OF ENVIRONMENTAL BIOLOGY AND BIODIVERSITY CONSERVATION AND GENETIC ENGINEERING

OBJECTIVE:

Develop Skills on determination of Physical and chemical analysis of soil and water, understand charting and mapping of Vegetation, and develop skills on DNA Isolation and Gel casting.

Unit/session/hours (Time required)	Topics for student preparation (Input)	Procedure (Process) Student centric Method of teaching	Activity	Learning outcome (out put)	Assessment
Module I: Soil pH analysis (5 Hours)	Soil pH analysis of soil using pH meter	Experimental learning	Discussion	To understand how pH of soil is calculate using pH meter	Evaluation through Q&A Write notes in record
Module II: Estimation of BOD (5 Hours)	Estimation of BOD by Winkler's method	Experimental learning	Discussion	To understand about how BOD of water samples is measure by Winkler's method	Evaluation through practical test paper Write notes in record
Module III: Study of community structure (7Hours)	Charting and mapping of vegetation, Raunkiaer's life forms,profile diagram (soil).	Experimental learning	Discussion	To understand mapping of vegetation and IVI calculation	Evaluation through practical test paper and problems Write notes in record

PG Botany					
Module IV : Study of ecological succession (3Hours)	Different types of ecological successions	Experimental learning	Discussion	To understand ecological succession	Evaluation through practical test paper Write notes in record
Module V: Working out problems in genetic engineering. (8 Hours)	Problems in genetic engineering.	Experimental learning	Discussion	To understand pboblems	Evaluation through practical test paper and problems Write notes in record
Module VI: Gel electrophoresis (8 Hours)	Gel preparation, casting, elution and staining.	Experimental learning	Discussion	To understand gel electrophoresis	Evaluation through practical test paper Write notes in record
Module VII: Construction of coding sequence of DNA using amino acid sequence. (4 hours)	Construction of coding sequence of DNA using amino acid sequence.	Experimental learning	Discussion	To understand construction of coding sequence of DNA using amino acid sequence.	Evaluation through practical test paper, problems Write notes in record

UNIT WISE BREAK UP: PRACTICALS OF ENVIRONMENTAL BIOLOGY & BIODIVERSITY CONSERVATION AND GENETIC ENGINEERING

PRACTICAL HOURS: 40

OBJECTIVE:

Develop Skills on determination of Physical and chemical analysis of soil and water and Understand charting and mapping of Vegetation and develop skills on DNA Isolation and Gel casting.

Module Number	Topic	No. of Lecture Hours	Pre-class activity	Pedagogy (in class)	Out of class assignment
Module I:	Soil pH analysis	5	To learn about procedure of pH analysis	Discussion and practical	To write short note on soil pH
Unit-1	Soil pH analysis of soil using pH meter			practical	pii
Module II:	Estimation of BOD		To learn about procedure of	Discussion and	To write short note on
Unit-1	Estimation of BOD by	5	Winkler's	practical	winkler's
	Winkler's method		method		method
Module III:	Study of community		To read the	Discussion,	To write short
	structure,	7	procedure of mapping of	illustrations and	note on Raunkaier;s
Unit-1	Charting and mapping		vegetation	practical	life forms
	of vegetation,				Problems on IVI
	Raunkiaer's life forms				Draw soil
Unit-11	Profile diagram (soil).				profile
Module IV:	Study of ecological		To learn	Discussion,	To write short
	successions	3	ecological successions	illustrations	note on ecological
Unit-1	Different types of		successions		successions
	ecological successions				
Module V:	Working out problems		To learn about	Discussion	Problems on
	in genetic engineering.	8	problems in genetic engineering		genetic engineering

PG Botany					
Unit-1	Working out problems in				
	genetic engineering				
Module VI:	Gel electrophoresis	0	To learn about Gel	Discussion practical	To write short note on Gel
Unit-1	Gel preparation, casting,	8	electrophoresis	1	electrophoresis
	elution and staining				
Module VII:	Construction of coding sequence of DNA using	4	To learn about Construction of coding	Discussion practical	To write short note on Construction
	amino acid sequence.		sequence		of coding sequence of DNA using
Unit-1	Construction of coding				amino acid
	sequence of DNA using				sequence
	amino acid sequence.				

Teacher in Charge: Mrs. Sabeena A. M.